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1. Introduction

The string field Φ that represents the tachyon vacuum in Schnabl’s solution [1] of open

string field theory [2] satisfies a novel gauge condition. The solution is not in Siegel

gauge [3]: Φ is not annihilated by the zero mode b0 of the antighost field in the canonical

open string frame. Rather, Φ is annihilated by the zero mode B of the antighost field in

the conformal frame of the sliver projector of the star algebra of open string fields. The

sliver frame is central to the construction and analysis of classical solutions [4]–[30] but,

as any projector frame, it is singular at the open string midpoint. One can wonder if the

Schnabl gauge condition BΦ = 0 defines a consistent open string perturbation theory. In

this question, the singular behavior of the open string midpoint has brought interesting

advantages but has also introduced some new subtleties.

At tree level, the sliver frame makes all conformal maps from the string diagrams to the

upper-half plane very simple [31, 32]. This is remarkable, if we recall that in Siegel gauge

these maps are extremely complicated and no closed form expressions are known except for

four-string amplitudes [33]. The subtleties arise because there are delicate contributions

whose origin can be traced to the singular behavior at the open string midpoint [32]. These

contributions affect the off-shell part of four-string amplitudes and could affect higher-point

functions on-shell. No Feynman rules are known that deal with these complications in

general tree-level amplitudes.

This state of affairs prompted [34] to introduce a class of regular linear b-gauges that

produce correct on-shell amplitudes. In this class, a propagator insertion with Schwinger

parameter approaching infinity induces an open string degeneration of the Riemann surface

associated with the string diagram– the desired behavior. Schnabl gauge does not belong

to the class of regular b-gauges, but there is a simple one-parameter family of regular linear

b-gauges that interpolates between Siegel and Schnabl gauge as its parameter λ goes from

infinity to zero. This suggests that Schnabl gauge amplitudes can be obtained by taking

the limit λ→ 0 of the well-behaved amplitudes in this λ-family.

While it is not yet proven that moduli space is covered for general tree amplitudes in

Schnabl gauge, it is no mystery how the relevant Riemann surfaces –disks with boundary

punctures — carry the moduli and how degenerations can be generated. Naive arguments,

however, suggest that Schnabl gauge at loop level only produces surfaces with degenerate

closed string moduli, thus making it impossible to reproduce the correct on-shell ampli-

tudes. In a one-loop amplitude, for example, the line traced by the open string midpoint

is a nontrivial closed curve. In the Schnabl propagator the open string midpoint does not

move, thus naively suggesting a diagram with a zero-length closed curve that signals closed

string degeneration.

It is the main purpose of this paper to discuss the one-loop string diagrams in Schnabl

gauge. Our results are quite encouraging. We find that the anticipated problems with

closed string moduli are not present. Our main tool is the regulation provided by the λ-

family of regular linear b-gauges that yield Schnabl gauge in the limit. Not only are closed

string moduli produced but they are easily calculated, something that does not happen in

Siegel gauge. Our work focuses only on the moduli problem; we do not attempt to fully
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compute any loop-amplitude. Such a computation, of course, would be quite interesting.

The analysis shows that closed string moduli arise because vertical lines in the sliver

frame that are identified horizontally in tree diagrams, require slanted identifications in the

case of loops. We recall that wedge surfaces [35, 36] are semi-infinite strips of fixed width

whose vertical edges carry identical parameterizations. We are led to introduce slanted

wedges, semi-infinite strips of fixed width whose vertical edges have parameterizations

related by a scale factor. These slanted wedges are new, interesting objects in their own

right. One can glue them and they are a natural ingredient in the construction of loop-

diagrams. As opposed to the familiar wedges, however, there are no states associated to

them. With the help of slanted wedges we develop a formalism that allows us to calculate

the moduli (both open and closed) of arbitrary tree and one-loop amplitudes. Our analysis

also shows that the BPZ-even gauge condition B+Φ = (B + B⋆)Φ = 0, where ⋆ denotes

BPZ conjugation, fails to generate the closed string modulus in one-loop diagrams because

in this gauge the identifications in the sliver frame are not slanted. Unlike Schnabl gauge,

the gauge B+Φ = 0 appears to be genuinely inadequate for loop calculations.

This paper is organized as follows. In section 2, we will begin our analysis with the

one-loop vacuum graph in general regular linear b-gauges, focusing on the Riemann surfaces

generated by varying one of the two Schwinger parameters of the propagator. We see that

the modulus of the annulus is an exactly calculable function of the Schwinger parameter

and is, in fact, independent of the gauge choice. We then study the vacuum graph in

Schnabl gauge as a limit in the family of regular interpolating gauges. The role of slanted

identifications in Schnabl gauge first becomes apparent and the error in the presumption

that diagrams are closed string degenerate is identified.

The situation becomes more nontrivial and challenging for the one-loop tadpole, i.e.

the one-loop one-point function. We study this diagram in section 3 for the family of

interpolating gauges parameterized by λ. The diagram only has a closed string modulus;

the position of the open string puncture can be adjusted using rotations. For any fixed

λ, we can use extremal length methods to show that the full moduli space of annuli is

produced as the Schwinger parameter is varied over its allowed range. In Siegel gauge

the modulus of the annulus is a complicated function of the Schwinger parameter (defined

implicitly by certain elliptic integrals, see, for example [37]). In the limit that we reach

Schnabl gauge the modulus becomes a simple function of the Schwinger parameter. In this

example one can glean the main geometrical insight that shows how the two components

of the annulus, each one with its own open string boundary, are glued across a hidden

boundary at infinity! The existence of such a hidden boundary leads us to conclude that

the operator L (the Virasoro zero mode in the sliver frame) has an anomalous left/right

decomposition, i.e. [LL, LR] 6= 0.

In section 4, we will introduce slanted wedges and show how to glue them together,

as suggested by star multiplication, to produce a closed algebra. We discuss how the

operators LL and LR and their BPZ conjugates act on slanted wedges and derive the action

of the full Schnabl propagator. This formalism simplifies tremendously the construction

of string diagrams, as we discuss for the case of trees in section 5. The moduli for tree

diagrams are the positions of open string punctures and these can be calculated efficiently,
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as is demonstrated for the case of the 5-point diagram. We present the generalization to

arbitrary tree diagrams, which is surprisingly straightforward using the algebra of slanted

wedges.

In section 6 we discuss the Riemann surfaces for general one-loop string diagrams in

Schnabl gauge. We show how to construct such a surface by gluing the hidden boundaries

of the surfaces associated with each of the boundaries of the annulus. Both of these surfaces

are naturally built with slanted wedges. We determine the closed string modulus and all

open string moduli as simple functions of the Schwinger parameters. In particular, we

find that the closed string modulus only depends on the Schwinger parameters of the

propagators running in the loop. The computations are illustrated in section 7 where we

work out the one-loop diagram with two external states. If both external states are placed

on the same boundary component there are two string diagrams, and we discuss how they

generate together the relevant open and closed string moduli.

In section 8 we use the family of λ-regularized gauges to justify our prescription for

the calculation of one-loop moduli. There are three types of gluing operations that need

to be justified in the Schnabl limit λ → 0: (i) the star multiplication of slanted wedges

corresponding to external states and propagator surfaces, (ii) the gluing along hidden

boundaries that forms a single strip from the two slanted wedges each of which contains

one boundary component of the one-loop diagram, and (iii) the identification of the edges

of the resulting strip that creates the annulus. We show that all three types of operations

can be justified rigorously in the Schnabl limit. We end in section 9 with some concluding

remarks.

2. The vacuum graph

In this section we discuss the geometry of the vacuum graph. Our objectives are to set up

notation and to calculate the modulus of the vacuum graph as a function of the Schwinger

parameter for general regular linear b-gauges.

2.1 Gauges, coordinate frames and the surface R(s)

Reference [34] studied open string perturbation theory in a class of gauges called linear

b-gauges. In these gauges, a linear combination of even moded antighost oscillators anni-

hilates the classical string field |ψcl〉:

B[v] |ψcl〉 = 0 . (2.1)

Here B[v] is determined by a vector field v(ξ) via

B[v] =
∑

k∈Z

v2kb2k =

∮
dξ

2πi
v(ξ)b(ξ) , with v(ξ) =

∑

k∈Z

v2kξ
2k+1 , v2k ∈ R . (2.2)

A subset of linear b-gauges in which string perturbation is guaranteed to produce the

correct on-shell amplitudes was identified in [34]. In this subset the vector field v(ξ) is

analytic in a neighborhood of the unit circle |ξ| = 1, and satisfies the condition

ℜ
(
ξ̄v(ξ)

)
> 0 for |ξ| = 1 . (2.3)

– 4 –



J
H
E
P
0
7
(
2
0
0
8
)
0
6
3

These gauges were called regular linear b-gauges. One also defines

L[v] ≡
{
Q,B[v]

}
=

∮
dξ

2πi
v(ξ)T (ξ) =

∑

k∈Z

v2kL2k . (2.4)

In a certain frame w = g(ξ) the operator L[v] generates translations [34, 11]. The map

g(ξ) is related to the vector field v(ξ) through

dg

dξ
= − 1

v(ξ)
. (2.5)

Normalizing v(ξ) appropriately, we can impose on g(ξ) the convenient boundary conditions

g(−1) = 0 , g(1) = iπ . (2.6)

We also use the frame z = f(ξ) where the operator L[v] is the zero mode Virasoro operator

and thus generates scaling. This frame is only determined up to an overall factor. We

choose the normalization

f(±1) = ± 1

2
. (2.7)

Given such a frame z = f(ξ), one can determine the associated vector field v(ξ) as

v(ξ) =
f(ξ)

f ′(ξ)
. (2.8)

The defining property of this vector field is that the operators L[v] and B[v] are, respec-

tively, the zero modes of the Virasoro and antighost operators in the z frame. Use of (2.5)

and (2.8) immediately shows that the w and z frames are related by g = − ln f + c, where

c is a constant. This constant is determined by our boundary conditions on g(ξ) and f(ξ)

in (2.6) and (2.7). We obtain

w = g(ξ) = − ln(2f(ξ)) + iπ = − ln(2z) + iπ . (2.9)

In this map z is always in the upper-half plane and the branch of the logarithm is taken

using 0 ≤ Arg z ≤ π. Inverting (2.9) we get

z = f(ξ) = −1

2
e−w . (2.10)

Picking a gauge condition (2.1) for the classical string field |ψcl〉 of ghost number one is

only the first step in the gauge fixing procedure [38 – 40, 34]. Appropriate vector fields v(ξ)

must be chosen for each ghost number and the gauge condition is that the corresponding

B[v] operator must annihilate the string field at the given ghost number. We will return

to this issue when we address general one-loop amplitudes in section 6.

We noted above that the operator L[v] generates rescalings in the z frame and trans-

lations in the w frame. As a differential operator we thus have

L[v] = −z d
dz

=
d

dw
. (2.11)
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The operator e−sL[v] creates a strip R(s) of length s in the w frame with two horizontal

open string boundaries [34], as depicted in figure 1(a). The boundary conditions (2.6)

ensure that the width of the strip is normalized to π. Furthermore, the strip domain R(s)

has as right boundary the curve w = g(ξ = eiθ) with 0 ≤ θ ≤ π; this is just the w-plane

image of the coordinate curve. It is clear from (2.11) that e−sL[v] translates by a distance s

to the left. It follows that the left boundary of R(s) is the right boundary copied a distance

s to the left.1

Using the relation (2.10), we can map the strip R(s) to the z frame. The right boundary

of R(s) in the w frame becomes the coordinate curve z = f(eiθ) with 0 ≤ θ ≤ π in the z

frame. As L[v] generates rescalings in this frame, the surface R(s) is swept out by rescalings

of the coordinate curve with scale factors ranging from one to es. As we can decompose

the operator L[v] into left and right pieces,

L[v] = L[v]L + L[v]R , (2.12)

we can similarly divide R(s) into two components, one associated with the action of e−sL[v]L

and the other associated with the action of e−sL[v]R . The component associated with

e−sL[v]R is the part of R(s) in the region ℜ(z) > 0 and is shaded in light grey in figure 1(b).

It is swept out by rescalings of the right part of the coordinate curve, which we parameterize

as
1

2
+ γR(θ) ≡ f

(
eiθ
)
, 0 ≤ θ ≤ π

2 . (2.13)

Similarly, the component of R(s) associated with e−sL[v]L , shaded in dark grey in the figure,

is located in the region ℜ(z) < 0, and is swept out by rescalings of the left part of the

coordinate line, which we parameterize as

−1

2
+ γL(θ) ≡ f

(
ei(π−θ)

)
, 0 ≤ θ ≤ π

2 . (2.14)

Note that the curves γR(θ) and γL(θ) introduced above are, respectively, the right and left

parts of the coordinate curve, displaced horizontally so that for θ = 0 they are at the origin

(figure 1(c)). The left component of R(s) is simply a reflection of the right component

around the axis ℜ(z) = 0, because the general form (2.2) of the vector field v(ξ) implies

γL(θ) = −γR(θ) . (2.15)

The left and right components of R(s) need to be glued on the imaginary axis along the

line QQ′, which stretches from f(i) to esf(i). For regular linear b-gauges f(i) is finite,

resulting in a finite boundary QQ′ generated by e−sL[v]L and e−sL[v]R . Thus, e−sL[v]L and

e−sL[v]R do not give the surface associated with e−sL[v] until they are glued along QQ′.

This can be traced to the non-commutativity of L[v]L and L[v]R,
[
L[v]L , L[v]R

]
6= 0 , (2.16)

which in turn implies e−sL[v] 6= e−sL[v]Re−sL[v]L for regular linear b-gauges. The operators

in (2.16) fail to commute because the vector field v does not vanish at the open string

midpoint (see [7]).

1This representation of R(s) differs from the representation in [34] by a rescaling of 1

2
e

s in the z frame

and by a translation of −s in the w frame.
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(a) (b) (c)

Figure 1: The surface R(s) created by e−sL[v] in the w frame (a) and in the z frame (b). Points R

and R′ related by horizontal translation w → w − s in the w frame are related by scaling z → esz

in the z frame. The surface R(s) is displayed for L[v] = Lλ with λ = 10−4 and s = 1. The curves

γL and γR arise from the coordinate curve f(eiθ), as illustrated in (c).

In this paper the family of λ-regulated gauges introduced in [34] plays an important

role. This family is defined through the one-parameter family of vector fields

vλ(ξ) = eλ(1 + e−2λξ2) tan−1(e−λξ) , with λ > 0 . (2.17)

The surface R(s) in this gauge is then generated by the operator

Lλ ≡ L[vλ] = L0 + 2

∞∑

k=1

(−1)k+1

4k2 − 1
e−2kλ L2k . (2.18)

This family interpolates from Siegel gauge as λ→ ∞ to Schnabl gauge which arises in the

limit λ→ 0. In fact, these gauges are regular linear b-gauges for all values λ > 0. Schnabl

gauge is not regular – this is why there is no proof yet that amplitudes arise correctly.

For the λ-regulated z frames we have the λ-regulated functions

fλ(ξ) =
1

2

tan−1(e−λξ)

tan−1(e−λ)
, with λ > 0 . (2.19)

While in general regular linear b-gauges the functions f(ξ), just like v(ξ), need only be

analytic in a neighborhood of |ξ| = 1, the functions (2.19) have the nice property that they

are analytic on the entire unit disk |ξ| ≤ 1. They map the real axis between ξ = −1 and

ξ = 1 to the real axis between z = −1
2 and z = 1

2 , and map ξ = 0 to z = 0. The region

in the z frame between the real axis and the curve z = f(eiθ) with 0 ≤ θ ≤ π can thus

be interpreted as a canonical coordinate patch that glues nicely to the boundary of R(s).

– 7 –
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The maps fλ(ξ) are thus coordinate functions. In the Schnabl limit λ→ 0, we obtain

f(ξ) ≡ lim
λ→0

fλ(ξ) =
2

π
tan−1 ξ . (2.20)

This is the familiar coordinate function of the sliver frame which is well defined for all

|ξ| ≤ 1 except for ξ = i. The open string midpoint ξ = i is mapped to i∞.

The behavior of the coordinate function fλ(ξ) for very small λ (near Schnabl gauge)

will be of interest. We focus on the coordinate curve fλ(ξ = eiθ) with 0 ≤ θ ≤ π. It is

convenient to use the angular variable θ̂ that measures angles with respect to the imaginary

axis

θ̂ =
π

2
− θ . (2.21)

The coordinate function (2.19) admits a simple expansion when both λ and θ̂ are small,

regardless of their ratio. One then finds2

fλ(eiθ) = − i

π
ln
(λ+ iθ̂

2

)
+ O(λ) + O(θ̂) . (2.22)

We define iΛ(λ) as the value of the coordinate function at ξ = i:

iΛ ≡ fλ(i) = − i

π
ln
λ

2
+ O(λ) . (2.23)

Happily, the regularized curve fλ(eiθ) only differs appreciably from the sliver curve f(eiθ)

for θ̂ = O(λ). For λ ≪ 1, the part of the curve fλ(eiθ) which deviates significantly from

f(eiθ) is thus entirely captured by (2.22). We can write the leading dependence as

fλ(eiθ) ≃ iΛ(λ) − i

2π
ln
[
1 +

( θ̂
λ

)2 ]
+

1

π
tan−1

( θ̂
λ

)
. (2.24)

The nature of the curve fλ(eiθ) is quite interesting. As illustrated in figure 2, for any λ≪ 1

the coordinate curve near the top takes the same shape. This is so because, apart from

the iΛ(λ) term that sets the height, the rest of fλ depends only on the ratio θ̂/λ, which

spans the same values as θ̂ grows from zero to some multiple of λ. For θ̂ = λ the coordinate

curve has come down about 0.11 from the top and is 50% of the way to the maximum real

value of 1/2 (top dashed lines). For θ̂ = 64λ the coordinate curve has come down about

1.32 from the top and is 99% of the way to the maximum real value (lower dashed lines).

Clearly, for sufficiently small λ, the coordinate curve deviates from the vertical lines that

define the sliver frame only for θ̂ ≪ 1.

The curves γλ
R and γλ

L which parameterize the coordinate curve fλ(eiθ) for λ-regulated

gauges will play an important role in our analysis. They are defined by

1

2
+ γλ

R(θ) ≡ fλ
(
eiθ
)
, −1

2
+ γλ

L(θ) ≡ fλ
(
ei(π−θ)

)
, (2.25)

2We follow the convention that terms of order λ ln λ are written as O(λ).
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Figure 2: Left: The coordinate curve fλ(eiθ) for θ ∈ [0, π/2] and λ = 10−4. The intersection with

the bottom dashed line indicates that by the time the curve has dropped about 1.32 from the top,

it is within 1% of the vertical line ℜ(z) = 1/2 that defines the sliver frame. Right: the same portion

of the coordinate curve for λ = 10−14. The top part of the coordinate curve is quite accurately the

same as the one shown to the left, but is displaced upwards.

a particular example of the general definitions (2.13) and (2.14). In the Schnabl limit

λ→ 0, γλ
R and γλ

L coincide, and we therefore define

γ(θ) ≡ lim
λ→0

γλ
R(θ) = lim

λ→0
γλ

L(θ) = i
2

π
tanh−1

(
tan

θ

2

)
. (2.26)

As expected, this is the parameterized vertical line that defines the left and right parts
1
2 − γ and 1

2 + γ of the coordinate curve of the sliver projector. Notice, however, that the

limit (2.26) is not uniform in θ. In fact, for all λ > 0 we have

lim
θ→π

2

ℜ
(
γλ

L/R(θ)
)

= ±1

2
, (2.27)

while ℜ(γ(θ)) = 0, independent of θ.

We now ask how much the coordinate curve of λ-regulated gauges still deviates from

the vertical line that defines the sliver by the time its imaginary part has been reduced to

Λ/2, that is, half the value it has at the top. To leading order in λ, the angle corresponding

to this point on the curve is given by

θ̂ 1
2

=
√

2λ → θ 1
2

= π
2 −

√
2λ . (2.28)
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A short calculation then shows

γλ
R

(
θ 1

2

)
= − 1

2π

√
2λ + i

Λ

2
+ O(λ) . (2.29)

As we can see, γλ
R(θ) only deviates by O(

√
λ) from the imaginary axis by the time its

height has dropped by half.

2.2 The annulus and its modulus

The surfaces associated with the one-loop vacuum graph are obtained by gluing the two

parameterized edges of the propagator to itself. The propagator associated with regular

linear b-gauges is in general a complicated object. Its geometric interpretation depends

on the ghost number of the state it acts on. In alternating gauge [34] the surface of

the propagator is built by gluing the strips associated with e−sL[v] and e−s⋆L⋆[v] in some

order (that depends on ghost number) and by including the action of the BRST operator

Q, that acts as a total derivative on moduli. The details of this construction will be

important for our general analysis in section 6. For now, we focus on one term that

arises from the propagator: it can be described by setting s⋆ = 0 and gives the strip

R(s) associated with e−sL[v]. The generalization to the full propagator will not introduce

further conceptual problems in our Riemann surface analysis. We restrict ourselves to the

simplified propagator in the discussion of the vacuum and the tadpole diagrams because it

suffices to demonstrate the main features of loop diagrams in Schnabl gauge.

For any regular linear b-gauge, the gluing of the simplified propagator R(s) to itself is

implemented in the w frame by the identification w ∼ w − s. The result, for each value of

s, is an annulus. In this annulus the boundaries are the horizontal segments BC and AD,

shown in figure 1(a) for λ-regularized gauges. The map from this annulus to a canonically

presented annulus in the ζ frame is

ζ = exp
(
−2πi

s
(w − iπ)

)
= exp

(
−2π2

s

)
exp
(
−2πiw

s

)
. (2.30)

See figure 3(a). We can also write, using (2.9),

ζ = exp
(2πi

s
ln 2z

)
. (2.31)

The map (2.30) takes BC into the unit circle |ζ| = 1 and AD into the inner circle |ζ| =

exp(−2π2/s). Since the strip R(s) is foliated in the w frame by horizontal lines of length

s at heights that go from zero to π it is clear that the map (2.30) takes the interior of the

strip to the region between the two ζ circles mentioned above. The shape of the edges of

R(s) is irrelevant to the map; their image under the map is a cutting curve for the annulus.

Shown to the right in figure 3(b) is the w-frame picture of R(s) rolled up into a cylinder

of height π and circumference s. The cutting curve is shown in both presentations.

The modulus M of an annulus with radii rin and rout with rin < rout is usually defined

by

M ≡ 1

2π
ln
rout

rin
. (2.32)
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(a) (b)

Figure 3: The vacuum graph obtained from gluing the edges of R(s), illustrated for L[v] = Lλ

with λ = 10−4. In (a) the surface is displayed as a canonical annulus in the ζ frame for s = 10.

The cutting curve is shown explicitly. In (b) the surface is displayed as a cylinder obtained from

the identification w ∼ w − s in the w frame for s = 1. This should be compared to figure 1(a).

The moduli space of annuli is the set

0 ≤M ≤ ∞ . (2.33)

For our annulus the modulus is

M =
π

s
. (2.34)

This result for the annulus modulus is valid for any regular linear b-gauge. In particular,

the modulus M of the annulus produced by the gluing of the edges of R(s) is the same

for all values of λ in the λ-regularized gauges and depends only on s. As s → 0, M → ∞,

the inner circle goes to zero size, and we approach closed string degeneration. As s → ∞
the inner circle approaches the outer circle, M goes to zero, and we approach open string

degeneration. The full moduli space (2.33) is therefore covered. It thus follows that in

the Schnabl limit λ → 0 the gluing of R(s) also gives an annulus of M = π/s and that

moduli space is covered in this case as well. The limit λ → 0 of figure 1 is shown in

figure 4. Moreover, figure 5 shows the map to the ζ plane and the cylinder view of the

w-presentation. Note that we could have calculated the annulus modulus in Schnabl gauge

using any other family of regular linear b-gauges which approaches Schnabl gauge when

the regulator is removed. The result for M would have been the same.

A few remarks about this construction in the Schnabl limit are in order.
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(a) (b)

Figure 4: The R(s) strip in the Schnabl limit λ = 0 both in the w and in the z frames, displayed

for s = 1. The gluing of the free edges of the strip gives rise to an annulus of finite modulus (see

figure 5). The gluing identification in the z frame is that induced by radial lines emerging from the

origin.

• The map (2.30) still takes the shaded domain in the w plane to the circular annulus

because the identification w ∼ w − s still holds. The cutting curve is infinitely long

(figure 5).

• In the z plane the vertical strip to the right produces the upper half of the annulus

(the upper half of the vertical cylinder of height π and circumference s). The vertical

strip to the left produces the lower half of the annulus. The two halves are glued.

• The identifications w ∼ w − s become slanted identifications z ∼ esz of the vertical

lines throughB and C, and of the vertical lines throughA andD. If the identifications

had been horizontal (z ∼ z − 1
2 + 1

2e
s) both the right and left strips would have

each given rise to a (closed string) degenerate annulus. In fact, such a problematic

horizontal identification happens for the gauge condition B+Φ = 0 in the sliver

frame. It is the slanted identification that makes the z frame picture in Schnabl

gauge consistent with a finite modulus annulus.

In the previous section we remarked that the propagator strip R(s) for regular linear

b-gauges can be decomposed into two components associated with e−sL[v]L and e−sL[v]R ,

respectively. These components are glued along the boundary QQ′ in figure 1(b). L[v]L
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(a) (b)

Figure 5: The vacuum graph obtained from gluing the edges of R(s) in the Schnabl limit λ→ 0.

In (a) the surface is displayed as a canonical annulus in the ζ frame for s = 10. In (b) the surface

is displayed as a cylinder obtained from the identification w ∼ w − s in the w frame for s = 1.

These surfaces differ from the corresponding finite-λ surfaces in figure 3 only through the shape of

the cutting curve.

and L[v]R generate this unmatched boundary that needs to be glued by hand because they

do not commute. The operators L and L⋆ in Schnabl gauge can also be decomposed into

left and right parts. We write L = LL + LR, L⋆ = L⋆
L + L⋆

R. In the Schnabl limit, the

unmatched boundary is hidden at i∞ in the z- frame, but arises in the annulus frame ζ as

the circle |ζ| = exp(−π2/s), shown dashed in figure 5(a). We are led to conclude that while

both L and L⋆ arise from vector fields that vanish at the open string midpoint, they do not

vanish fast enough to ensure that LL and LR commute and that L⋆
L and L⋆

R commute:3

[LL, LR] 6= 0 , [L⋆
L, L

⋆
R] 6= 0 . (2.35)

We conclude this subsection by recalling the relation of the modulus M with the

conformal invariant known as the extremal length [41]. The extremal length is an invariant

associated to a given set of curves Γ on a Riemann surface. Let ρ denote a conformal

metric (a metric for which ds = ρ(z, z̄)|dz|) on the Riemann surface. The length ℓ(γ, ρ) of

a curve γ ∈ Γ and the area A(Ω, ρ) of the Riemann surface Ω are given by:

ℓ(γ, ρ) =

∫

γ
ρ|dz| , A(Ω, ρ) =

∫∫

Ω
ρ2 dxdy . (2.36)

3In fact the linear combination L
+ = L + L

∗ arises from a vector that, as we approach the midpoint,

vanishes sufficiently fast to ensure that L
+
L and L

+
R commute.
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We define ℓ(Γ, ρ) as the length of the shortest curve in Γ with respect to the metric ρ:

ℓ(Γ, ρ) = inf
γ∈Γ

ℓ(γ, ρ) . (2.37)

The extremal length λΓ is defined as [41]

λΓ = sup
ρ

(
ℓ2(Γ, ρ)

A(Ω, ρ)

)
. (2.38)

To evaluate λΓ one must search over metrics until the quantity inside parenthesis on the

right-hand side is maximized. The extremal metric ρ for which the maximum is attained

is a minimal area metric: it is the metric with least area consistent with all curves in

the set having a length greater than or equal to a certain prescribed value. From the

definition (2.38) it is clear that the extremal length λΓ is a conformal invariant.

Let us now return to the vacuum graph of regular linear b-gauges. Imagine the domain

R(s), glued to itself to form the vacuum graph, as a cylinder of circumference s and height

π. This is, in fact, the w frame picture in figure 3(b). There are two types of curves on this

cylinder (or annulus): open curves that stretch from one boundary to the other and closed

curves that go around the cylinder. We thus have an extremal length λopen associated

with the set of open curves and an extremal length λclosed associated with the set of closed

curves. It is a familiar result that in the w frame the same metric ρ = 1 is extremal for

both open and closed curves [42]. It is clear that in this flat metric the shortest open curves

have length π and the shortest closed curves have length s. The area, moreover, is πs. It

follows that the extremal lengths are

λopen =
π2

πs
=
π

s
, λclosed =

s2

πs
=
s

π
. (2.39)

It is interesting to note that

λopenλclosed = 1 , and M = λopen =
1

λclosed
. (2.40)

The relations (2.40) are general and valid for any annulus. Note that degeneration of a

given type means vanishing extremal length for the curves of associated type. Thus closed

string degeneration (s→ 0) happens for λclosed → 0 and open string degeneration (s→ ∞)

happens for λopen → 0.

3. One-loop tadpole graph

In this section we discuss the one-loop tadpole graph. The underlying Riemann surface

is an annulus with an open string puncture, that is, a puncture on one of the boundary

components of the annulus. The puncture, which represents the external state, introduces

significant complications in the geometry. Indeed, it is well known that in Siegel gauge

the map of the string diagram to the round annulus is nontrivial and the modulus of the

annulus cannot be calculated in simple closed form.
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As in the previous section we restrict ourselves to the contribution from the propagator

surface R(s) generated by e−sL[v]. We discuss the graph for the family of interpolating

gauges. We first show that for any value of the regulator λ the moduli space of annuli is

generated when the Schwinger parameter s covers the range from zero to infinity. We then

study the geometry as the regulator parameter λ goes to zero and we approach Schnabl

gauge. We present a construction which allows us to exactly map the tadpole string diagram

to the round annulus in the limit λ → 0. The modulus of the annulus becomes exactly

calculable in Schnabl gauge.

3.1 Covering moduli space in the λ-regulated gauges

Let us consider the one-loop tadpole graph with propagator e−sL[v]. It is useful to first

examine the surface obtained in the λ-regulated gauges. The way to assemble the surface

is illustrated using figure 6. We need the part of the surface associated with the external

state and the propagator strip R(s).

As we can see in figure 6(b), the placement of R(s) in the z frame is the same one used

for the vacuum graph in the last section (figure 1(b)). As discussed above equation (2.35),

it is convenient to view the surface R(s) as built by gluing together two pieces — one

associated with e−sLλ
R and one associated with e−sLλ

L . These two pieces are glued along

the dashed line QQ′ to form the complete surface R(s).

The two curved boundaries of e−sLλ
L are identified, just as for the vacuum graph. This

time, however, the two curved boundaries of e−sLλ
R are not glued to each other. To form

the tadpole, we need to glue these two boundaries to the left and right boundaries of the

external state. As the functions fλ(ξ) are coordinate functions and thus well defined for

all |ξ| ≤ 1, we can conveniently place this external state in the region between the real axis

and the coordinate curve fλ(eiθ). The operator insertion is then located at z = f(0) = 0

(see figure 6(b)).

The gluing patterns both in the z and w frames are readily obtained from the graph

in figure 6(a). The only slightly nontrivial gluing operation is that identifying the curves

AQ and CQ′ in the z plane (the lines with triple arrows). We can express these two curves

using γλ
L/R defined in (2.25):

AQ = −1

2
+ γλ

L , CQ′ = es(
1

2
+ γλ

R) . (3.1)

It then follows that the identification between AQ and CQ′ is given by the map

z = −1

2
+ γλ

L(θ) → z′ = es
(1
2

+ γλ
R(θ)

)
. (3.2)

Recalling γL(θ) = −γR(θ), we find that a point z ∈ AQ is identified with the point z′ ∈ CQ′,

where z′ is obtained by first reflecting z across the vertical axis z → −z̄, and then applying

the expansion factor es:

z → z′ = −es z̄ . (3.3)

There should be no concern that z′ appears to be a non-analytic function of z. The above

relation is not a sewing relation, but just a relation valid on the curve (for example, the
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(a) (b) (c)

Figure 6: (a) The topology of the one-loop tadpole diagram obtained by gluing the external strip

for the Fock space state to the propagator strip. (b) The tadpole diagram for a λ-regulated gauge

in the z frame, displayed for λ = 10−4 and s = 1. Note the cut from Q to A that separates the two

boundary components. (c) The tadpole diagram in the w frame.

analytic relation ξξ′ = −1 becomes ξ′ = −ξ̄ on the unit circle). The analytic gluing relation

is determined by the sequence of conformal maps z → f−1(z) back to the coordinate circle,

ξ → −1/ξ, followed by the action of f and, finally, multiplication by es. The analytic

gluing relation corresponding to the identification (3.3) is thus

z ∼ esf
(
− 1

f−1(z)

)
. (3.4)

Since there is no simple closed form expression for the modulus M(s) of the annulus in

Siegel gauge, we cannot hope to calculate explicitly M(s) for arbitrary finite λ. Extremal

length, however, gives a very simple proof that moduli space will be covered. Consider the

w-frame picture in figure 6(c). The extremal metric cannot be found, but let us use the

metric ρ = 1 on the lower half of the strip R(s) (below Q′Q) and ρ = 0 elsewhere. In

other words, we are setting ρ = 1 only on the part of the surface corresponding to e−sLλ
L

(shaded in dark grey in the figure). The area of the surface in this metric is A = 1
2πs. In

this metric the shortest open curves have length π
2 . This gives the following inequality for

the open string extremal length

λopen ≥
(

π
2

)2
πs
2

=
π

2s
. (3.5)

For closed curves we take ρ = 1 all over the propagator strip R(s) and over the portion of

the external state strip that lies to the left of the vertical line AB in figure 6(c). In other
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words, we set ρ = 1 in the region ℜ(w) < 0. We set ρ = 0 elsewhere. A little thought

shows that in this metric the shortest closed curve has length s. The area is πs + A(λ),

where A(λ) is the area of the external state strip in the chosen metric. We thus get

λclosed ≥ s2

πs+A(λ)
→ λopen ≤ π

s
+
A(λ)

s2
. (3.6)

In the Siegel limit λ → ∞, the vertical line AB in the w frame coincides with the right

boundary of R(s) so that the area A(∞) = 0. It is easy to see that the area A(λ) grows as

λ decreases, but it stays finite even in the limit λ → 0. In fact, the relevant integral can

be exactly calculated and one finds that

A0 ≡ lim
λ→0

A(λ) = π ln 2 . (3.7)

Back in (3.6), we use A(λ) ≤ A0 and find

λopen ≤ π

s
+
A0

s2
=
π

s
+
π ln 2

s2
. (3.8)

Combining (3.5) and (3.8) and recalling that M = λopen we get

π

2s
≤M(s) ≤ π

s

(
1 +

ln 2

s

)
. (3.9)

The above inequalities imply that M(s) → 0 as s → ∞ and M(s) → ∞ as s → 0, so the

full moduli space will be covered for s ∈ [0,∞). This is consistent with the results of [34]

which showed that regular linear b-gauges, such as the λ-regulated gauges, give correct

on-shell string amplitudes. The inequalities (3.9) hold for all λ > 0. We thus conclude that

moduli space is covered in the Schnabl limit λ→ 0.

3.2 Modulus in Schnabl gauge

The estimates done in the previous subsection bound M(s) and allow us to confirm that

moduli space is covered for any value of the deformation parameter λ. We now claim that

the value of the modulus M(s) becomes calculable in simple closed form in the Schnabl

limit λ → 0. The derivation requires careful analysis of a conformal map in the limit

λ → 0. Since the final result is simple, we will present it here, without proof. In the

following subsection we justify our claim.

We begin with figure 7(a), where we see that the surface of the tadpole diagram

appears as two disconnected vertical strips in the z frame. The strip above the real segment

[−1
2e

s,−1
2 ] represents e−sLL and the strip above the real segment [−1

2 ,
1
2e

s] represents the

external state and e−sLR . These real segments are the boundaries of the annulus. On the

left strip the identification of the edges is z ∼ esz. On the right strip the identification

is more nontrivial. Its left boundary carries the ordinary sliver parameterization and is

given by −1
2 + γ(θ), with γ(θ) defined in (2.26). The right boundary of the right strip

is given by es(1
2 + γ(θ)) and thus carries a parameterization which is rescaled by es. It

follows that a point R on the line above z = −1
2 and a point R′ on the line above z = 1

2e
s

are identified if the copy S of R on the line above z = 1
2 is related to R′ via the scaling
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(a) (b)

(c)

Figure 7: (a) The one-loop tadpole in the z frame. The surface is composed of two separate

strips: one above z ∈ [− 1
2e

s,− 1
2 ] and the other above z ∈ [− 1

2 ,
1
2e

s]. These two strips are joined at

i∞. The figure is displayed for s = 1. (b) The same surface with the right strip translated to the

right by a distance a0 + 1, which depends on s and makes the identifications of the left and right

boundaries work with rays through the origin. (c) The middle figure mapped to the w frame with

w = − ln 2z + iπ.

z ∼ esz. This is, in fact, the gluing prescription discussed around equation (3.3). The two

separate strips are supposed to be glued together at i∞ but it is not obvious how to glue
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these hidden boundaries.

We could proceed as we did in the previous section and map this configuration of

surfaces directly to the w frame via (2.9). Just like in figure 6(c)), the external state would

be represented in the w frame by an infinite strip of height π. In Schnabl gauge, however,

we can construct a different map of the tadpole diagram to the w frame, one in which the

whole surface is foliated by horizontal lines of length s. It is then possible to use the map

ζ(w) in (2.30) to get a round annulus. We will now show how this is done.

In the z frame we translate the right strip towards the right by a distance that makes

the line through the identified points R and R′ go through the origin. Since the heights

of R and R′ are related by es it follows, by similar triangles, that R ∼ R′ are related by

z ∼ esz (see figure 7(b)). The requisite displacement, called a0 + 1 for later convenience,

is determined from the similar triangles:

es =
CR′

AR
=
a0 + 1 + 1

2e
s

a0 + 1
2

. (3.10)

One readily finds that

a0 =
1

es − 1
, a0 + 1 =

1

1 − e−s
. (3.11)

With this result one can check that the two vertical lines for the right strip are located at

ℜ(z) = a0 +
1

2
=

1

2
coth

(s
2

)
, and ℜ(z) = a0 + 1 +

1

2
es = es · 1

2
coth

(s
2

)
. (3.12)

The map w = − ln(2z)+iπ in (2.9) takes the full left and right strips to the w-frame picture

in figure 7(c). This picture is similar to that in figure 4(b), which refers to the vacuum

graph. There is only one minor difference: the image of the right strip in figure 7(c) is

displaced some distance to the left. This happens because the coordinate z(A) of the point

A satisfies

z(A) = a0 +
1

2
>

1

2
→ ℜ

(
w(A)

)
< 0 . (3.13)

Since both strips in figure 7(b) work with identification z ∼ esz, the w plane figure 7(c)

has the identification w ∼ w − s. This w presentation is different from the earlier w

presentation in which the coordinate half-disk for the external state appears as a semi-

infinite strip (figure 6(c)); the coordinate half-disk has been pushed up! The identification

w ∼ w − s ensures that the map (2.30) takes the w-plane region to the annulus with

modulus

M =
π

s
. (3.14)

Inserting an external state to form the tadpole graph therefore did not affect the modulus

of the annulus — the modulus (3.14) coincides with our result (2.34) for the modulus of

the vacuum graph. The only evidence of the external state is that the top boundary of the

annulus is split between the boundary AB of the coordinate half-disk with the puncture

and the boundary BC generated by e−sLR . The surprisingly simple form of the modulus

will turn out to be generic for one-loop diagrams in Schnabl gauge. In fact, we will find

that the annulus modulus of a general one-loop diagram is a simple function that depends

only on the Schwinger parameters of the propagators running in the loop; the Schwinger

parameters of trees attached to the loop do not affect the modulus of the annulus.
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Figure 8: The z-frame λ-regulated one-loop tadpole of figure 6 cut along QQ′ and with the right

piece translated to the right a distance a0 + 1 so that the identification of A and C is through

scaling by es. The figure is displayed for λ = 10−4 and s = 1.

3.3 Taking the λ→ 0 limit

We will now justify our construction of the map of the Schnabl tadpole diagram to the

round annulus. Let us consider the λ-regulated version of the one-loop tadpole graph, first

shown in figure 6(b). We cut the diagram along the QQ′ line to produce two disconnected

pieces. Just like we did for the Schnabl tadpole, we displace the right part of the figure

to the right a distance a0 + 1. The identifications on the left part of the surface still work

with z ∼ esz, but on the right they do not anymore. Choosing a0 as before (see (3.11)) we

ensure that the points A and C are still identified with z ∼ esz, but this identification is

only approximate for the other points on the curves AQ̄ and CQ̄′.

As before, the map w = − ln(2z) + iπ takes the left part of figure 8 (the surface

associated with e−sLλ
L) to the familiar annular domain with identifications exactly given

by w ∼ w− s (see figure 9). Since z(Q) = iΛ (see (2.23)) the image of QQ′ in the w frame

is shifted ln 2Λ to the left with respect to the image of the inner boundary DE.

For the map of the right part of figure 8 we have to be a bit more careful. We will

use the same map w = − ln(2z) + iπ, which results in a surface whose identification is

not quite w ∼ w − s and thus cannot be interpreted as an annular region for general λ.

Furthermore, the image of Q̄Q̄′ in the w frame does not quite coincide with the image of

QQ′. What we are going to show is that in the limit as λ→ 0 (and consequently Λ → ∞)

the identifications needed to form the full annulus become exact. More precisely, as λ→ 0

two things should happen:

1. All points p ∈ QQ′ and p̄ ∈ Q̄Q̄′ that are at the same height (and should therefore be
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identified), are mapped to points on the w frame that approach each other as λ→ 0.

This convergence is uniform on QQ′ ensuring that the top and bottom parts of the

annulus glue well.

2. Points q ∈ AQ̄ and q′ ∈ AQ̄′ that must be identified will map to coordinates w

that satisfy w(q) − w(q′) = s in the limit λ → 0. This convergence is uniform on

AQ̄, ensuring that the top part of the annulus works with the same identification

w ∼ w − s as the bottom part.

If these two claims hold, it justifies the prescription given in the previous subsection for

the Schnabl limit. In the remainder of this subsection we will prove (1) and (2).

Consider first claim (1) regarding the gluing of QQ′ to Q̄Q̄′. Let ixΛ, with x a real

number, denote the imaginary part of a point p ∈ QQ′ that must be identified with a point

p̄ ∈ Q̄Q̄′ with the same imaginary part. Since the imaginary part of any point p (or p̄)

ranges between Λ and esΛ we have

1 ≤ x ≤ es → Λ ≤ xΛ ≤ esΛ . (3.15)

We then have

z(p) = i xΛ , z(p̄) = a0 + 1 + i xΛ =
1

1 − e−s
+ i xΛ , (3.16)

where we made use of (3.11). Using (2.9) we get

w(p̄) − w(p) = − ln

[
z(p̄)

z(p)

]
= − ln

[
1 +

1

ixΛ(1 − e−s)

]
(3.17)

As λ → 0 we have Λ → ∞. It is then clear that for any fixed value of s > 0 and any

x ∈ [1, es] the above gives w(p̄)−w(p) → 0. Furthermore, it follows from (3.17) and x ≥ 1

that the convergence of Q̄Q̄′ to QQ′ is uniform. This proves claim (1).

It is interesting to discuss the above result in more detail. We show in figure 9 two

examples of the w plane surface, both for s = 1. The top figure uses λ = 10−4 and the

bottom one uses λ = 10−14. One can see the image of Q̄Q̄′ as the sloping edge that

approaches (as we go from the top figure to the bottom figure) the horizontal image of

QQ′. Expanding the logarithm in (3.17) we get

w(p̄) − w(p) = i
1

xΛ(1 − e−s)
− 1

2

1

x2Λ2(1 − e−s)2
+ O(Λ−3) . (3.18)

The vertical distance between the images of p and p̄ vanishes as Λ−1. The horizontal

distance vanishes faster, as fast as Λ−2. These features are clearly seen in the figure for

the pair Q̄, Q, and for the pair Q̄′, Q′. Furthermore, the vertical convergence of Q′ to Q̄′

in the w frame is faster by a factor of es than the vertical convergence of Q to Q′. This

is due to the suppression factor 1
x in the imaginary part of (3.18), and is clearly visible in

the figure.
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Figure 9: The λ-regulated one-loop tadpole in the plane w = − ln(2z) + iπ. The top figure arises

for λ = 10−4 and the bottom figure arises for λ = 10−14. Both figures use s = 1.

Let us now address claim (2). Before the translation is performed (see figure 6(b)), the

identified curves AQ and CQ′ are parameterized as shown in (3.1). After the translation

by a0 + 1, we obtain figure 8 with the curves AQ̄ and CQ̄′ given by

AQ̄ = a0 +
1

2
+ γλ

L , CQ̄′ = a0 + 1 + es
(

1

2
+ γλ

R

)
. (3.19)

These parameterized curves are identified. The (complex) ratio r(θ) between identified
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points on the curves is given by

r(θ) =
a0 + 1 + es

(
1
2 + γλ

R(θ)
)

a0 + 1
2 + γλ

L(θ)
= es · γR(θ) + 1

2 coth s
2

γL(θ) + 1
2 coth s

2

, (3.20)

where we used the definition (3.11) of the shift a0 +1 as well as (3.12). We must show that

this ratio has the limit

r(θ) → es for λ→ 0 , 0 ≤ θ ≤ π

2
. (3.21)

If this is so, the map to the w plane (via the logarithm) will imply that the points cor-

responding to θ are separated by a horizontal translation by s. To make the map to the

annulus well defined in the limit λ→ 0, we need this horizontal separation by s to hold to

arbitrary precision for all points on the identified curves, i.e. we need the limit (3.21) to

hold uniformly on 0 ≤ θ ≤ π
2 .

One finds r(θ = 0) = es, exactly, as expected for the ratio of the base points A and C

of the two curves. Indeed, the translation was designed to make the identification z ∼ esz

work on the real axis. For general θ, a short calculation gives

r(θ) = es · 1 + δ(θ)

1 − δ(θ)
, with δ =

γR − γL

γR + γL + coth s
2

=
ℜ
(
γR

)

iℑ
(
γR

)
+ 1

2 coth s
2

, (3.22)

where we used γL = −γR in the last step. As we map the two points in question to the w

plane, their separation is given by ln r. We obtain

ln r = s+ ln
(1 − δ

1 + δ

)
. (3.23)

We want to show that δ goes to zero uniformly on 0 ≤ θ ≤ π
2 when λ → 0. We are going

to break the curve γR into two parts: (i) the top part for which ℑ(γR) ∈ [Λ/2,Λ] and (ii)

the bottom part for which ℑ(γR) ∈ [0,Λ/2]. We recall from (2.29), that this corresponds

to splitting the range of θ at θ = θ 1
2

. Consider the top part (i). In this region we estimate

∣∣δ
∣∣ =

∣∣∣∣
ℜ
(
γR

)

iℑ
(
γR

)
+ 1

2 coth s
2

∣∣∣∣ ≤
Maxℜ

(
γR

)

Minℑ
(
γR

) =
1
2
Λ
2

=
1

Λ
(3.24)

so that ∣∣δ(θ)
∣∣ ≤ 1

Λ
for θ ∈

[
θ 1

2

,
π

2

]
. (3.25)

Now consider region (ii), i.e. 0 ≤ θ ≤ θ 1
2

. Recall our earlier estimate (2.29) that at θ = θ 1
2

the coordinate curve has indeed risen to a height of Λ/2 and that

ℜ
(
γR

(
θ 1

2

))
= − 1

2π

√
2λ . (3.26)

In this region ℑ(γR) can be arbitrarily small, and |ℜ(γR)| reaches its maximal value at

θ = θ 1
2

. We thus estimate

|δ| =

∣∣∣∣
ℜ(γR)

iℑ(γR) + 1
2 coth s

2

∣∣∣∣ ≤
∣∣∣∣
ℜ(γR)

1
2 coth s

2

∣∣∣∣ ≤
1
2π

√
2λ

1
2

=
1

π

√
2λ (3.27)
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for region (ii), so that
∣∣δ(θ)

∣∣ ≤ 1

π

√
2λ for θ ∈

[
0, θ 1

2

]
. (3.28)

We now have upper bounds on δ valid for the regions (i) and (ii). For any λ < 1 the upper

bound in (3.25) for region (i) is larger than that in (3.28) for region (ii). Therefore we

obtain the uniform upper bound

∣∣δ(θ)
∣∣ ≤ 1

Λ
for all θ ∈

[
0,
π

2

]
, λ < 1 . (3.29)

This means that δ(θ) will vanish uniformly on 0 ≤ θ ≤ π
2 as λ → 0, as we wanted to

prove. This establishes the second claim, and thus completes the argument that shows

that regulation leads to the claimed simple map in Schnabl gauge.

We conclude with a comment concerning the Schnabl gauge limit. In the unregulated

case, shown in figure 7(b), we see that the left and right cylinders are supposed to be glued

at i∞. It may seem as if the gluing involves both the coordinate patch strip of the external

state and the strip to the right of it. The regulation shows that this is not quite the way

things work. The coordinate frame for the external state tapers out and does not glue to

the bottom part of the diagram, which arises from the left cylinder. The tip Q̄ of the local

coordinate frame (the string midpoint) lies at the end of the gluing line. As can be seen in

figure 9, at Q̄ the coordinate curve goes both up towards B and down to eventually reach

A. The behavior at Q̄ follows from conformality to the z frame, as shown in figure 8.

4. Slanted wedges: a family of surfaces

Loop amplitudes in Schnabl gauge use surfaces that do not feature in tree amplitudes. As

we have seen in the previous sections, we sometimes deal with semi-infinite strips that look

like the familiar wedge surfaces, except that the vertical edges are subject to identifications

that are slanted. For wedge surfaces, presented as vertical semi-infinite strips, the natural

identification of the vertical edges is a horizontal translation by the width a of the wedge.

It turns out to be convenient to introduce a set of surfaces that generalize the wedge

surfaces. They will be called slanted wedges and are characterized by two parameters:

the width a of the underlying wedge and the slant b, to be defined below. There is one

important difference between wedges and slanted wedges. Associated with wedges there

are wedge states but there are no surface states associated with slanted wedges.

For wedge surfaces, the surface states are based on once-punctured disks. The disk is

formed by attaching the left edge of the wedge surface to the right edge of a unit-width

wedge coordinate frame (with a marked point, or puncture) and gluing the two remaining

vertical edges with a horizontal identification. The resulting surface is a semi-infinite

cylinder with a puncture on the boundary at the real axis. This surface can be conformally

mapped to a disk. More precisely, the disk has an inner puncture because it misses one

point, the image of i∞ on the wedges. This missing point can be ignored. The situation is

far more serious for slanted wedges. As we have seen in the construction of the one-loop

tadpole, a wedge with a slanted identification has a hidden boundary at i∞, a boundary
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that must be glued to another surface. Instead of having a vanishingly small additional

boundary associated with a missing point, as in the case for wedges, slanted wedges have

an additional boundary that cannot be ignored. As a result there are no canonical surface

states associated with slanted wedges. The hidden boundaries of slanted wedges can be

brought into the open by λ-regularization.

Even without associated states, we can define a kind of star algebra of slanted wedges.

While not strictly needed for tree diagrams, slanted wedges simplify significantly the con-

struction of the associated Riemann surfaces. For loop diagrams slanted wedges are key to

the construction of the relevant Riemann surfaces.

4.1 Definition and examples

The slanted wedge [a; b], with a, b ≥ 0, is defined on the upper-half plane z as the semi-

infinite strip between ℜ(z) = 1
2 and ℜ(z) = 1

2 + a:

[a; b] ≡
{
z
∣∣∣
1

2
≤ ℜ(z) ≤ 1

2
+ a , ℑ(z) ≥ 0

}
. (4.1)

The above states that, as a region, [a; b] is the wedge of width a, positioned so that

the left boundary is ℜ(z) = 1
2 . By definition, the left boundary ℜ(z) = 1

2 carries the

parameterization induced by the sliver map z = 2
π tan−1 ξ. More explicitly, the point

ξ = eiθ is mapped to

Left Boundary: eiθ → 1

2
+ γ(θ) with 0 ≤ θ ≤ π

2
, (4.2)

where the curve γ(θ) was defined in (2.26). It follows that the left boundary of [a; b] glues

naturally to a coordinate patch −1
2 ≤ ℜ(z) ≤ 1

2 of the sliver frame. The slant parameter

b > 0 is a scaling factor for the parameterization of the right boundary ℜ(z) = 1
2 + a of

[a; b]. We have

Right Boundary: eiθ → 1

2
+ a+ b · γ(θ) with 0 ≤ θ ≤ π

2
. (4.3)

This implies that the parameterization of the right boundary is obtained by stretching

that of the left boundary by the factor b. See figure 10(a) for a representation of the

slanted wedge [a; b]. For b = 1 both boundaries of the slanted wedge carry the same

parameterization and are thus horizontal translations of each other. Thus [a; 1] is just the

familiar ordinary wedge surface of width a:

[a; 1] = Wa . (4.4)

Fock space states are described as [1; 1] with a local operator insertion at z = 1 between

the two boundaries. The Fock space state insertion is mapped from ξ = 0 to [1; 1] via

z = 1+ 2
π tan−1 ξ. In general, slanted wedges can carry operator insertions or line integrals.

Since slanted wedges are Riemann surfaces we have some equivalence relations that

must be noted. First, the position of the slanted wedge can be altered. While [a; b] is
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(a) (b)

Figure 10: (a) The slanted wedge [a; b] in the sliver frame z. (b) Illustration of the star mul-

tiplication of a slanted wedge [a; b] with a Fock space state [1; 1]. The result is a slanted wedge

[a+ b; b].

always assumed to have a left boundary ℜ(z) = 1
2 , a translation by a real constant can

be used to position the slanted wedge elsewhere. This is useful to form star products, for

example. Sometimes we have to deal with wedge regions where both edges carry scaled

parameterizations. We could call such surfaces [bL; a; bR] with bL and bR denoting the

scaling factors for the left and the right edges, respectively. Explicitly, this means that

the parameterizations of the left and right boundaries in (4.2) and (4.3) are replaced by
1
2 + bLγ(θ) and 1

2 + a+ bRγ(θ), respectively. This surface, under the map z → z/bL and a

possible translation, gives us the conformal identification

[bL; a; bR] ∼ [a/bL ; bR/bL] . (4.5)

We obtain a wedge of width a/bL with unit scaling on the left boundary and scaling bR/bL
on the right boundary. The above shows that we do not have to define slanted wedges with

scaled parameterizations on both edges.

4.2 Operations on slanted wedges

In order to create the surfaces relevant to the Feynman rules we need to introduce the “star-

multiplication” of slanted wedges. For plain wedges the star multiplication is homomorphic

to the star multiplication of the corresponding wedge states. Since we have no states

associated with slanted wedges, their star multiplication is only a device to construct

interesting surfaces.

As for surface states, we define star multiplication as the gluing of the right boundary

of the first surface to the left boundary of the second surface. This gluing, however, requires

identical parameterizations. For two slanted wedges [a1; b1] and [a2; b2], we define

[a1; b1] ∗ [a2; b2] ≡ [ a1 + b1a2 ; b1b2 ] . (4.6)

The logic behind this is clear: since the right boundary of the first slanted wedge carries

a scaling b1, the second slanted wedge must be fully scaled by b1 so that its left boundary

carries the same scaling. In this process its width becomes b1a2 and the scaling of its right
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boundary b1b2. Once the surfaces are glued, we get a total width of a1 + b1a2 and a scaling

factor b1b2, which applies to the right boundary.

Clearly, slanted wedges form a closed algebra under the star multiplication and plain

wedges form a commutative subalgebra. The algebra (4.6) of slanted wedges [a; b] can also

be represented as the algebra of matrices of the form

[a; b] ↔
(
b a

0 1

)

. (4.7)

Indeed, in agreement with (4.6) we then have

(
b1 a1

0 1

)(
b2 a2

0 1

)
=

(
b1b2 a1 + b1a2

0 1

)
. (4.8)

A simple and useful particular case of (4.6) involves a Fock space state and a slanted wedge:

[a; b] ∗ [1; 1] = [a+ b ; b ] . (4.9)

This example is illustrated in figure 10(b). Note that in the final surface the puncture lies

at z = 1
2 + a+ 1

2b, the first 1
2 for the conventional offset, the a due to the first surface and

1
2b because the slanting required scaling the unit width of the Fock state surface by b.

We now consider the Schnabl gauge propagator. As we will see, its various ingredients

act naturally on slanted wedges and can be themselves represented by slanted wedges. The

classical propagator is given by

P =

∫
dsds⋆ e−sLBQB⋆e−s⋆L⋆

=

∫
dsds⋆ BQe−sLe−s⋆L⋆

B⋆ . (4.10)

We will focus solely on the Riemann surface interpretation of this propagator, namely the

action of e−sLe−s⋆L⋆
on surfaces. The presence of line integral insertions from B,Q, and

B⋆ will not play a role in the following analysis.

We will construct the action of the propagator step by step, treating the operators

e−sLR , e−sLL , e−s⋆L⋆
R , and e−s⋆L⋆

L separately. As discussed in section 2.2 these operators

generate hidden boundaries, which will now be associated with slanted wedges. For loop

diagrams these boundaries require special attention.

Let us first consider the action of e−sLR on a general Fock space state |F 〉. We represent

|F 〉 in the sliver frame z as the semi-infinite strip between ℜ(z) = −1
2 and ℜ(z) = 1

2 . The

operator insertion of the Fock space state is mapped to z = 0 in the sliver frame via the

map z = 2
π tan−1 ξ. Recalling the discussion of R(s) in section 3, we see that e−sLR |F 〉 is

represented in the z frame by gluing a strip of width 1
2(es −1) to the right boundary of |F 〉

(figure 4). The parametrization of the right boundary on the resulting surface, however,

has a scaling factor es. We conclude that e−sLR attaches to the right of |F 〉 the slanted

wedge [12 (es − 1); es] (see figure 11(a)). Having determined that e−sLR is represented by

the right attachment of the slanted wedge [12 (es − 1); es], it follows that, more generally,

e−sLR [a; b] = [a; b] ∗ [12(es − 1); es] . (4.11)
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(a) (b) (c)

Figure 11: (a) The action of e−sL on a Fock space state adds the shaded strips on both sides of

the Fock space state. The shaded strip on the right represents e−sLR , the shaded strip on the left

represents e−sLL . The dashed grey lines illustrate the rescaling of the parameterizations from the

inner to the outer boundaries. (b) The action of e−s
⋆
L

⋆

on a Fock space state creates the shaded

strips which lie on top of the Fock space state surface. (c) The action of e−s
⋆
L

⋆

on a Fock space

state after flipping the strips of the propagator.

The slanted wedge [a; b] has hidden boundaries and the action of e−sLR introduces an

additional one that stems from cutting the propagator surface R(s). We have seen this

hidden boundary emerge through λ-regularization as the line Q̄Q̄′ displayed in figure 8.

Similarly, e−sLL glues a strip of width 1
2(es − 1) to the left boundary of |F 〉. Now

the left boundary of the resulting surface has a parametrization which is scaled by es (see

figure 11(a)). To interpret this added piece of strip as a slanted wedge, we need to rescale

it by a factor e−s so that its left boundary has canonical parameterization. We conclude

that the action e−sLL on |F 〉 glues the slanted wedge [12 (1− e−s); e−s] to the left boundary

of |F 〉. This generalizes to

e−sLL [a; b] = [12(1 − e−s); e−s] ∗ [a; b] . (4.12)

It follows from (4.11) and (4.12) that

e−sRLRe−sLLL [a; b] = e−sLLLe−sRLR [a; b] , (4.13)

for all values of sL and sR. We thus conclude that acting on slanted wedges the operators

LL and LR commute. The action of e−sL on a given slanted wedge can be calculated as

follows

e−sL[a; b] = e−s(LL+LR)[a; b] = e−sLLe−sLR [a; b]

= [12 (1 − e−s); e−s] ∗ [a; b] ∗ [12 (es − 1); es] ,
(4.14)

and therefore

e−sL[a; b] = [12(1 + b)(1 − e−s) + ae−s ; b ] . (4.15)

For the particularly important case of b = 1, the above reduces to

e−sL [a; 1] = [1 + (a− 1)e−s ; 1] . (4.16)
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Since [a; 1] is a wedge state, this identity can be readily confirmed by familiar methods (see

eq. (A.27) of [32]).

The geometric interpretation of e−s⋆L⋆ |F 〉 is somewhat more intricate. In the construc-

tion of e−sL|F 〉 we glue the right boundary of the w-frame strip R(s) to the coordinate

curve of |F 〉. This boundary of R(s) is mapped by (2.10) to the coordinate curve ℜ(z) = ±1
2

and the gluing to the Fock space state works out naturally, as shown in figure 11(a). It

follows from the discussion in §4.3 of [34] that the surface corresponding to e−s⋆L⋆
can be

obtained by gluing the left boundary of the w-frame R(s⋆) to the coordinate curve of |F 〉.
This left boundary of R(s⋆) is mapped by (2.10) to ℜ(z) = ±1

2e
s⋆

and the strip develops

inwards up to ℜ(z) = ±1
2 . To glue the chosen boundary of R(s⋆) to the coordinate curve

at ℜ(z) = ±1
2 , we rescale R(s⋆) by z → e−s⋆

z. The result, illustrated in figure 11(b), is

that e−s⋆L⋆
R acting on the sliver-frame |F 〉 introduces a strip between 1

2e
−s⋆

and 1
2 , which

is glued to the Fock space state at ℜ(z) = 1
2 . In this presentation the surface added by

e−s⋆L⋆
R lies on top of the Fock state surface. The parameterization of the left boundary of

this added strip is shrunk by a factor of e−s⋆
. We can flip the surface of e−s⋆L⋆

R around the

axis ℜ(z) = 1
2 to obtain the result shown in figure 11(c). We have thus found that e−s⋆L⋆

R

attaches the left boundary of the slanted wedge [12 (1 − e−s⋆
); e−s⋆

] to the right boundary

of |F 〉. On general slanted wedges

e−s⋆L⋆
R [a; b] = [a; b] ∗ [12(1 − e−s⋆

); e−s⋆
] . (4.17)

Similarly, we obtain

e−s⋆L⋆
L [a; b] = [12(es

⋆ − 1); es
⋆
] ∗ [a; b] . (4.18)

We notice from (4.11), (4.12), (4.17), and (4.18) that the slanted wedges associated with

e−s⋆L⋆
L and e−s⋆L⋆

R can be obtained from those associated with e−sLR and e−sLL , respec-

tively, by letting s → s⋆. This is not a peculiarity of Schnabl gauge; it follows because

the surface R⋆(s⋆) generated e−s⋆L[v]⋆ can be obtained from the surface R(s) generated by

e−sL[v] from a reflection in the w frame [34].

The action of e−s⋆L⋆
on a given slanted wedge can be calculated from

e−s⋆L⋆

[a; b] ≡ e−s⋆L⋆
Le−s⋆L⋆

R [a; b] = [12 (es
⋆ − 1); es

⋆
] ∗ [a; b] ∗ [12(1 − e−s⋆

); e−s⋆
] (4.19)

and gives

e−s⋆L⋆

[a; b] = [12(1 + b)(es
⋆ − 1) + aes

⋆
; b ] . (4.20)

For the case of surface states the above reduces to the identity

e−s⋆L⋆

[a; 1] = [(1 + a)es
⋆ − 1; 1] . (4.21)

that is readily confirmed by familiar methods (see eq. (A.28) of [32]).

From (4.11), (4.12), (4.17), and (4.18) we find that the left and right parts of the

classical propagator act on a slanted wedge [a; b] as

e−sLRe−s⋆L⋆
R [a; b] = [a; b] ∗ [12(1 + es−s⋆

) − e−s⋆
; es−s⋆

] ,

e−sLLe−s⋆L⋆
L [a; b] = [12(1 + es

⋆−s) − e−s ; es
⋆−s] ∗ [a; b].

(4.22)
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It now follows that the action of the classical propagator (4.10) on a slanted wedge [a; b] is

given by:

e−sLe−s⋆L⋆

[a; b] = [ 1
2 (1 + b)(1 + es

⋆−s − 2e−s) + a es
⋆−s ; b ] . (4.23)

On wedge states [a; 1], this simplifies to

e−sLe−s⋆L⋆

[a; 1] =
[
1 − 2e−s + (1 + a)es

⋆−s ; 1
]
. (4.24)

As we have emphasized, there are no states associated with slanted wedges [a; b] for

b 6= 1. Such surfaces are incomplete, they have a hidden vertical boundary segment at

i∞. Since eventually no hidden boundary can remain, a surface [a; b] with b 6= 1, will

have its hidden boundary glued to that of a compensating surface [â; 1/b] with inverse

slant factor. This will be especially relevant when we build general one-loop diagrams in

section 6. There we construct compensating slanted wedges [a; eseff ] and [â; e−seff ] which

can then be mapped to the annulus. For tree diagrams the situation is simpler: the total

surface representing the diagram is always of the form [a; 1], with horizontal identifications

applied to the vertical edges.

4.3 Keeping track of insertions on slanted wedges

The open string moduli are encoded in the positions of punctures on the corresponding

Riemann surfaces. As we will use slanted wedges to describe these surfaces, we need to

keep track of operator insertions on slanted wedges. We denote by

[ a; b |x1, x2, . . . , xk] , with
1

2
≤ x1 ≤ x2 ≤ . . . ≤ xk ≤ 1

2
+ a , (4.25)

a slanted wedge with marked points at real coordinates xi. The wedge is presented, as

usual, with its left boundary above z = 1
2 . When star multiplying two slanted wedges, the

position x of a marked point on the first slanted wedge is unaffected:

[ a; b |x] ∗ [ a′; b′] = [a+ ba′; bb′ |x ] . (4.26)

A puncture at x′ on the second wedge, on the other hand, is displaced and experiences

scaling:

[ a; b ] ∗ [ a′; b′ |x′] = [a+ ba′; bb′ | 1
2 + a+ b

(
x′ − 1

2

)
] . (4.27)

From this one can readily verify that

e−sLL [ a; b |x] = [ . . . ; . . . | 1 − e−s + e−sx ] ,

e−sLR [ a; b |x] = [ . . . ; . . . | x ] ,

e−s⋆L⋆
L [ a; b |x] = [ . . . ; . . . | es⋆

x ] ,

e−s⋆L⋆
R [ a; b |x] = [ . . . ; . . . | x ] .

(4.28)

We put dots . . . on the width and slant parameters of the resulting wedges because these

values are unaffected by the punctures and were given earlier. Note that the exponentials

of right operators do not affect the position since they add a slanted wedge from the right.

It follows from the above relations that

e−sL e−s⋆L⋆

[ a; b |x] = [ . . . ; . . . | 1 − e−s + es
⋆−sx ] . (4.29)

This formula generalizes easily to the case of additional punctures: all xi → 1−e−s+es
⋆−sxi.
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4.4 Representation of the L, L⋆ algebra on slanted wedges

It is known that one can view L,L⋆, L+ = L + L⋆ as well as L+
L and L+

R as differential

operators acting on the familiar wedge states. As we have learned, the left and right parts of

L and L⋆ only act naturally on slanted wedges (acting on an ordinary wedge they will give

a slanted wedge). In this section we represent LL, LR, L
⋆
L and L⋆

R, as differential operators

on slanted wedges. This provides some further insight into slanted wedges, a check of this

formalism and, as a by product, a tool to derive (or rederive) some identities.

Let us focus on the right part of the L and L⋆ operators. From (4.11) and (4.17) we

have

LR[a; b] = − d

ds

∣∣∣
s=0

e−sLR [a; b] =

(
− 1

2
b∂a − b∂b

)
[a; b] ,

L⋆
R[a; b] = − d

ds⋆

∣∣∣
s⋆=0

e−s⋆L⋆
R [a; b] =

(
− 1

2
b∂a + b∂b

)
[a; b] ,

(4.30)

and we identify the representation

LR = −1

2
b∂a − b∂b , L⋆

R = −1

2
b∂a + b∂b . (4.31)

For the left counterparts a similar calculation gives

LL = (a− 1

2
)∂a + b∂b , L⋆

L = −
(
a+

1

2

)
∂a − b∂b . (4.32)

One can readily confirm that acting on slanted wedges the operators LR and LL commute,

and so do L⋆
R and L⋆

L. One can now recover the more familiar differential operators

L = −
(

1

2
(1 + b)− a

)
∂a , L⋆ = −

(
1

2
(1 + b) + a

)
∂a , L+ = L+L⋆ = −(1 + b)∂a . (4.33)

It is now possible to calculate the commutator [L,L⋆] by imagining it acting on a wedge

state,

[L,L⋆] = [−
(

1
2(1 + b) + a

)
∂a ,−

(
1
2(1 + b) − a

)
∂a] = −(1 + b)∂a = L+ , (4.34)

which is the expected result. In fact, even the right parts of L,L⋆, and L+ obey the same

equation, as one would expect,

[LR, L
⋆
R] =

[
−1

2b∂a + b∂b ,−1
2b∂a − b∂b

]
= −b∂a = L+

R . (4.35)

Let us illustrate how one derives identities using the above representation of operators.

Note first that

L+
R ≡ LR + L⋆

R = −b∂a . (4.36)

It then follows that

e−s+L+
R [a; b] = [a+ bs+; b] = [a; b] ∗ [s+; 1] , (4.37)
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(a)

(b)

Figure 12: (a) A Feynman diagram for a five-point amplitude. (b) The topology of the corre-

sponding Riemann surface.

showing that e−s+L+
R acts by right multiplying a wedge of length s+. Additionally, for

wedge states [a; 1] of width a we have

−L+
R[a; 1] = ∂a[a; 1] , [a; 1] = e−aL+

R [0; 1] , (4.38)

where the zero-length wedge [0; 1] is the identity state |I〉. Another example uses (4.22)

and (4.37):

e−tLRe−tL⋆
R [a; b] = [a; b] ∗ [1 − e−t ; 1] = e−(1−e−t)L+

R [a; b] , (4.39)

leading us to conclude that e−tLRe−tL⋆
R = e−(1−e−t)L+

R .

5. Riemann surfaces for tree-level diagrams

In this section we will use the technology of slanted wedges developed in the previous

section to construct the punctured disks associated with tree diagrams. We start with

the particularly simple case of a diagram with five external lines. We then sketch the

construction for arbitrary tree-level diagrams.

5.1 The five-point diagram

Let us use the formalism of section 4 to construct the surface corresponding to the tree-

level five-point diagram shown in figure 12. Our goal is to determine the relative angles of
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the operator insertions on the unit disk. These are the open string moduli. There are, of

course, no closed string moduli. All other diagrams contributing to the five point function

are permutations of the external states in the diagram of figure 12.

The diagram contains two internal propagators, parameterized by the Schwinger pa-

rameters ti, t
⋆
i with i = 1, 2. Here and in the following we use the letter t for Schwinger

parameters of propagators in tree diagrams (or subtrees of loop diagrams). As this is a

tree-level diagram, the classical propagator (4.10) must be used on both lines. We use

arrows to assign a direction to each propagator line in the diagram. At fixed Schwinger

parameters the classical propagator on the i-th line acts as the operator e−tiLBQB⋆e−t⋆i L⋆

in the indicated direction, i.e. on the state representing the surface in the direction of the

arrow. Equivalently, it acts as the BPZ conjugate operator e−t⋆i LBQB⋆e−tiL⋆
in the direc-

tion opposite to the arrow. Since the full propagator is BPZ invariant, amplitudes do not

depend on this assignment after integration over Schwinger parameters. The selection of

specific arrows is simply a convention that fixes which Schwinger parameter we call ti and

which one we call t⋆i .

Let us consider the part of the diagram consisting of the first propagator (t1,t
⋆
1) and

the Fock space states |FA〉, |FB〉. Each Fock space state is of the form [1; 1|1]. Together,

and acted by the propagator, they form the twice-punctured surface state

[a1; 1 | xA, xB ] ≡ e−t1Le−t⋆1L⋆(
[1; 1|1]A ∗ [1; 1 |1]B

)

= e−t1Le−t⋆1L⋆

[2; 1|1, 2]
= [1 − 2e−t1 + 3et

⋆
1−t1 ; 1 |xA, xB ] ,

with xA = 1 − e−t1 + et
⋆
1−t1

xB = 1 − e−t1 + 2et
⋆
1−t1 ,

(5.1)

where we used (4.24) to calculate the wedge parameters and (4.29) to calculate the positions

xA and xB of the punctures on the resulting wedge. Similarly, we can analyze the part

of the diagram with the second propagator (t2,t
⋆
2) and the Fock space states |FD〉, |FE〉.

They form the surface state

[a2; 1 | xD, xE ] ≡ e−t2Le−t⋆2L⋆(
[1; 1|1]D ∗ [1; 1|1]E

)
= [1 − 2e−t2 + 3et

⋆
2−t2 ; 1|xD, xE ] , (5.2)

with the operator insertions corresponding to |FD〉 and |FE〉 located at

xD = 1 − e−t2 + et
⋆
2−t2 ,

xE = 1 − e−t2 + 2et
⋆
2−t2 .

(5.3)

To assemble the Riemann surface corresponding to the five-point diagram we glue the

surfaces [a1; 1|xA, xB ], [1; 1|1]C (corresponding to |FC〉) and [a2; 1|xD, xE ]. We obtain the

surface Σ given by

Σ ≡ [a1; 1|xA, xB ] ∗ [1; 1|1]C ∗ [a2; 1|xD, xE ]

= [a1 + a2 + 1; 1|xA, xB, a1 + 1, a1 + 1 + xD, a1 + 1 + xE ] .
(5.4)
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In particular, we notice that the wedge Σ is not slanted. The two vertical boundaries of Σ

are thus identified horizontally and the resulting surface is mapped to the unit disk η via

η = exp

(
2πiz

a

)
, a = a1 + a2 + 1 . (5.5)

A horizontal distance ∆x along the boundary of Σ translates into an angular separation

∆φ on the unit disk given by
∆φ

2π
=

∆x

a
. (5.6)

For the relative angles of the operator insertions on the boundary of the unit disk we thus

obtain

φB − φA

2π
=

xB − xA

a
=

et
⋆
1−t1

3 − 2e−t1 − 2e−t2 + 3et
⋆
1−t1 + 3et

⋆
2−t2

,

φC − φA

2π
=

a1 + 1 − xA

a
=

1 − e−t1 + 2et
⋆
1−t1

3 − 2e−t1 − 2e−t2 + 3et
⋆
1−t1 + 3et

⋆
2−t2

,

φD − φA

2π
=
a1 + 1 + xD − xA

a
=

2 − e−t1 + 2et
⋆
1−t1 − e−t2 + et

⋆
2−t2

3 − 2e−t1 − 2e−t2 + 3et
⋆
1−t1 + 3et

⋆
2−t2

,

φE − φA

2π
=
a1 + 1 + xE − xA

a
=

2 − e−t1 + 2et
⋆
1−t1 − e−t2 + 2et

⋆
2−t2

3 − 2e−t1 − 2e−t2 + 3et
⋆
1−t1 + 3et

⋆
2−t2

.

(5.7)

This concludes the computation of angles for the string diagram in figure 12. Of course,

the positions of three of the punctures can be fixed arbitrarily, so there are just two open

string moduli. As usual for amplitudes in non BPZ-invariant gauges, we have twice as

many Schwinger parameters as moduli of the corresponding Riemann surface. Indeed,

we have four Schwinger parameters (t1, t
⋆
1, t2, t

⋆
2). This is not a problem because each

of the two propagators is accompanied by a BRST operator Q. In [32, 31], the classical

propagator (4.10) was rewritten as

P =
B

L
+ other terms , (5.8)

and it turned out that the B/L term by itself covered the moduli space of on-shell ampli-

tudes for the four-point function. All other terms only contributed off-shell.

It is therefore interesting to ask if there is an assignment of B/L and B⋆/L⋆ to the

propagator lines in the five-point diagram which produces all the requisite open string

degenerations: as a Schwinger parameter becomes large the associated line produces the

degeneration represented by a long strip. That degeneration, moreover, must occur inde-

pendent of the values of the other Schwinger parameters, even if they also go to infinity.

Not every assignment works. If we assign B⋆/L⋆ to both propagators (namely, t1 = t2 = 0)

making one Schwinger parameter large is not sufficient to guarantee an open string de-

generation. In fact, for t⋆1 = t⋆2 → ∞ the angles of the five insertions on the unit circle

spread out over the circle, a configuration that is clearly not degenerate. This is not too

surprising. If we had regarded the left propagator as acting to the right, we would have

encountered the operator combination e−t⋆2LLe−t⋆1L⋆
L acting on the Fock space state |FA〉.
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This product of operators has been noticed to produce interesting subtleties in [32]. Al-

though both Schwinger parameters in the operator diverge, the resulting Riemann surface

is perfectly regular. Indeed, acting on any slanted wedge we have from (4.22):

lim
t⋆1=t⋆2→∞

e−t⋆2LLe−t⋆1L⋆
L [a; b] = lim

t⋆1=t⋆2→∞
[12 + 1

2e
t⋆1−t⋆2 − e−t⋆2 ; et

⋆
1−t⋆2 ] ∗ [a; b] = [1; 1] ∗ [a; b]

= [a+ 1; b] .

(5.9)

In this limit the operator simply inserts the unit wedge [1; 1]. This is a surface of finite

width and finite rescaling and cannot induce an open string degeneration in any diagram.

For all other choices of assignments of B/L and B⋆/L⋆ to the two propagator lines, open

string degenerations are always produced when we make any Schwinger parameter large.

Details of this analysis are given in appendix A.

5.2 General tree diagrams

The construction of the surface for the five-string diagram was particularly simple. For

general tree-level diagrams we need to be more systematic. As we did for the five-string

diagram we assign an arrow to each propagator, indicating the direction in which it acts.

This assignment is arbitrary and will not affect the total set of surfaces created as the

Schwinger parameters vary over their full range because the propagator is BPZ-invariant.

We now rewrite the five-string diagram in a way that makes the case for the general

rules to be stated below. Let us revisit the surface considered in (5.1):

e−t1Le−t⋆1L⋆(
[1; 1|1]A ∗ [1; 1 |1]B

)
= e−t1LLe−t⋆1L⋆

Le−t1LRe−t⋆1L⋆
R

(
[1; 1|1]A ∗ [1; 1 |1]B

)
. (5.10)

Recalling (4.22), we then find

e−t1Le−t⋆1L⋆(
[1; 1|1]A ∗ [1; 1 |1]B

)

= [12(1 + et
⋆
1−t1) − e−t1 ; et

⋆
1−t1 ] ∗ [1; 1|1]A ∗ [1; 1 |1]B ∗ [12 (1 + et1−t⋆1) − e−t⋆1 ; et1−t⋆1 ]

= L1 ∗ [1; 1|1]A ∗ [1; 1 |1]B ∗R1 ,

(5.11)

where we have defined the slanted wedges Li and Ri associated with the left and right part

of the i-th propagator:

Li ≡ [12(1 + et
⋆
i −ti) − e−ti ; et

⋆
i −ti ] , Ri ≡ [12(1 + eti−t⋆i ) − e−t⋆i ; eti−t⋆i ] . (5.12)

It is now clear that (5.2) becomes:

e−t2Le−t⋆2L⋆(
[1; 1|1]D ∗ [1; 1|1]E

)
= L2 ∗ [1; 1|1]D ∗ [1; 1 |1]E ∗R2 . (5.13)

Assembling now the full surface Σ as in (5.4) we have

Σ = L1 ∗ [1; 1|1]A ∗ [1; 1 |1]B ∗R1 ∗ [1; 1|1]C ∗ L2 ∗ [1; 1|1]D ∗ [1; 1 |1]E ∗R2 . (5.14)
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Figure 13: The surface Σ for general tree diagrams is built by tracing the grey dotted line coun-

terclockwise around the diagram, starting at an arbitrary external state. When tracing along the

i-th propagator one picks up either the slanted wedge corresponding to the left part (Li) or right

part (Ri) of the propagator. This depends on the direction of the propagator (black arrows).

Note that Σ is a wedge of unit slant factor (an ordinary wedge) because the slant factors

of Li and Ri are multiplicative inverses of each other. Since the right and left edges of Σ

are to be identified, we can slide part of the wedge state from left to right, cyclically. We

write, for convenience,

Σ = [1; 1|1]A ∗ [1; 1 |1]B ∗R1 ∗ [1; 1|1]C ∗ L2 ∗ [1; 1|1]D ∗ [1; 1 |1]E ∗R2 ∗ L1 . (5.15)

The rule for building the surface Σ for general tree diagrams is now clear: Begin at some

external state and trace around the diagram in the counterclockwise direction. For each

external state add the factor [1; 1|1]. For each line i traversed against the propagator arrow

add a factor Ri. For each line i traversed along the propagator arrow add a factor Li.

All factors are added from the right. The formula in (5.15) results from the application of

this rule to the diagram in figure 12, starting at the external state |FA〉. Note that the

rules build the surface using half strings. If we are tracing in the direction of the arrow on

the i line, we multiply by the surface Li because the propagator acts from the left on the

surface to be built. If we are tracing against the arrow of the propagator, we multiply by

the surface Ri because, in this case, the propagator acts from the right on the surface we

have already built.

For the more complicated diagram in figure 13 the rules are still simple to follow.

Although it is redundant information, the labels Li and Ri in figure 13 represent the

factors that must be included, as a result of the chosen assignment of arrows, when we

follow the grey dotted curve along the diagram. We have,
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Σ = [1; 1|1] ∗ L1 ∗R2 ∗ [1; 1|1] ∗ L3 ∗ . . . ∗ Li ∗ [2; 1|1, 2] ∗Ri ∗ . . .

. . . ∗R3 ∗ L2 ∗ Ln ∗ [2; 1|1, 2] ∗Rn ∗R1 ∗ [1; 1|1] .
(5.16)

The resulting surface is of unit slant (for each Li there is an Ri) and takes the form

Σ = [a; 1 |x1, x2, . . . xk ] , (5.17)

for some calculable width a and some calculable positions xi. The left and right boundaries

of Σ are identified through translation by a. We can therefore map the glued Σ surface to

a unit disk using η = exp(2πiz/a). To determine the moduli of the surface, we only need

to know the angular separation between operator insertions on the unit circle. If insertions

are separated by ∆x on Σ, their relative angle ∆φ on the unit circle is simply given by

∆φ

2π
=

∆x

a
. (5.18)

This concludes our discussion of Riemann surfaces for general tree-level diagrams.

6. Riemann surfaces for general one-loop diagrams

In section 3 we built the surface corresponding to the tadpole diagram in Schnabl gauge

using the simplified propagator B/L (i.e. s⋆ = 0). Using the z frame we built separately

the parts of the surface that contain the inner and outer boundary components of the

annulus, as displayed in figure 7(b). Let us now review this construction using the algebra

of slanted wedges.

On the outer boundary (the right strip in the z frame) there is a Fock space state

[1; 1|1]. It is acted by the right part e−sLR of the propagator so we get a slanted wedge Σ

given by

Σ = e−sLR [1; 1|1] = [12(1 + es); es|1 ] , (6.1)

where we made use of (4.11) and (4.28). On the inner boundary there is only the remaining

left part e−sLL of the propagator so the resulting slanted wedge Σ̂ is just

Σ̂ ≡ [12(1 − e−s); e−s] , (6.2)

making use of (4.12). The slanted wedges Σ and Σ̂ are glued to each other at their hidden

boundaries at i∞, as discussed in section 3 using λ-regularization.

We need to place the surfaces Σ and Σ̂ in the z-plane in such a way that: (i) their hidden

boundaries at i∞ glue correctly, and (ii) the slanted identifications become translations in

the w frame (z = −1
2e

−w). We refer to the result as the natural w-picture. For the

identifications on Σ to be simple translations in the w frame, we shift Σ horizontally,

so that the position of its right boundary is a rescaling by es of its left boundary. The

translation is uniquely determined and Σ lands between the vertical lines given in (3.12).

Similarly, we need to shift the position of Σ̂ in such a way that the position of its right

boundary is a rescaling by e−s of its left boundary. As e−s < 1, this implies that we need

to position Σ̂ in the region ℜ(z) < 0. In fact, we readily see that Σ̂ must be placed as the

region between ℜ(z) = −1
2 and ℜ(z) = −1

2e
−s.
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But we are not done yet. The boundaries at i∞ now do not glue correctly. By the

definition of slanted wedges, the parameterizations of the left boundaries of Σ and Σ̂ match

— indeed, they both have unit scaling factor. But for the hidden boundaries at i∞ to glue

nicely in the w frame, the parameterizations of the left boundary of Σ needs to match

the parametrization of the right boundary of Σ̂.4 We can achieve this simply by rescaling

the shifted Σ̂ by es. Then Σ̂ is positioned between ℜ(z) = −1
2e

s and ℜ(z) = −1
2 . This is

precisely the configuration of surfaces that we ended up with and fully justified in section 3.

The above steps can easily be generalized to one-loop diagrams of arbitrary complexity.

We will now show how this is done. A detailed justification of the procedure is given in

section 8, where we discuss the λ-regulation explicitly.

6.1 The natural w-picture

For a one-loop diagram, we construct two complementary surfaces

Σ ≡ [a; eseff | ~x ] and Σ̂ ≡ [â; e−seff | ~̂x ] , (6.3)

where ~x and ~̂x collectively represent the positions of all punctures on Σ and Σ̂, respectively.

These surfaces are said to be complementary because their scaling factors multiply to one.

On each surface, the left and the right boundaries are identified, and the two surfaces are

glued to each other at their hidden boundaries at i∞.

The natural w picture is one in which the hidden boundaries of Σ and Σ̂ glue nicely

and the identifications on Σ and Σ̂ are horizontal translations by seff . To obtain this

picture we need to place the surfaces Σ and Σ̂ correctly in the z frame. First, we shift the

surfaces Σ and Σ̂ by real constants a0 and â0, respectively, so that the position of their

right boundaries is a rescaling of the left boundaries by eseff and e−seff , respectively. Recall

that by definition all slanted wedges start out with their left boundary at ℜ(z) = 1
2 . The

required shifts are thus determined by the relations

eseff =
a0 + a+ 1

2

a0 + 1
2

, e−seff =
â0 + â+ 1

2

â0 + 1
2

. (6.4)

Thus

a0 =
a

eseff − 1
− 1

2
, â0 = − â

1 − e−seff
− 1

2
. (6.5)

This shift places the surface Σ at

Final Σ region: a0 +
1

2
≤ ℜ(z) ≤ eseff

(
a0 +

1

2

)
. (6.6)

As we discussed for the tadpole example above, we then rescale Σ̂ by a factor of eseff so

that it has the canonical parametrization on its right boundary. With this scaling Σ̂ ends

up in the location

Final Σ̂ region: eseff

(
â0 +

1

2

)
≤ ℜ(z) ≤ â0 +

1

2
. (6.7)

4This requirement will lead to the established result for this diagram, but will be justified in more

generality using λ-regularization in section 8.3.
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After positioning Σ and Σ̂ in this way we map to the w frame via (2.9) and to the annulus

frame ζ via

ζ = e
−

2πi
seff

(w−iπ)
. (6.8)

The modulus M of the annulus was defined in (2.32). We can read it off from (6.8) as

M =
π

|seff |
. (6.9)

A point x on Σ with 1
2 ≤ x ≤ 1

2 + a is located at z = x+ a0 in the shifted Σ region (6.6).

Using (2.31), we see that it ends on a boundary of the annulus at an angle

φ =
2π

seff
ln(2|a0 + x|) =

2π

seff
ln
(
2
∣∣∣x− 1

2
+

a

eseff − 1

∣∣∣
)
. (6.10)

Similarly, any point x̂ on Σ̂ is located at z = eseff (x̂ + â0) in the final Σ̂ region (6.7) and

lands at an angle

φ̂ =
2π

seff
ln(2eseff |x̂+ â0|) =

2π

seff
ln
(
2
∣∣∣
1

2
− x̂+

â

1 − e−seff

∣∣∣
)
. (6.11)

All points in ~x land on the same boundary component and all points in ~̂x land on the other

boundary component. With the maps written here, if seff > 0 the points in ~x lie on the

outer component and if seff < 0 they lie on the inner component. Of course, there is no

invariant distinction between these components as they can be exchanged by a conformal

map.

6.2 General one-loop diagrams

Let us now build the complementary surfaces Σ and Σ̂ in (6.3) for a general one-loop

diagram. Let n be the number of propagators running in the loop. It follows that there

are also n vertices within the loop. These vertices will be labeled 1 to n as we move

counterclockwise in the loop (see figure 14(a)). Two lines of each cubic vertex in the loop

connect to loop propagators. The remaining line can lead to a single external state or to

a subtree diagram with a set of external states. In either case, the additional external

state(s) at this vertex are all on one specific boundary of the annulus. We let Σ represent

the part of the diagram which is drawn on the outer side of the loop and Σ̂ represent the

part of the diagram on the inside of the loop. Eventually, we will glue the surfaces Σ and

Σ̂ along their hidden boundaries, shown as dashed lines in figure 14(b). In section 6.1 we

have learned how to perform this gluing.

If the external states at the i-th vertex are on the Σ-side of the annulus, they add to

Σ a surface

[ai; 1 | ~yi ] = [ai; 1 | y1
i , . . . , y

mi

i ] with ai > 0 , (6.12)

where the yα
i are the positions of the punctures and α = 1, . . . mi is an index that enu-

merates them. If only a Fock space state is connected to vertex i, the surface in (6.12) is

[1; 1|1]. As shown in figure 14(a), the surface in (6.12) can in general represent a compli-

cated subtree diagram. The slant factor is one because the subdiagram is a tree. As the
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(a) (b)

Figure 14: (a) A general one-loop diagram with n vertices and n propagators in the loop. At each

vertex the external states can either contribute to Σ or Σ̂ and thus end up on either boundary of the

annulus. (b) The topology of the surfaces at vertex one. The right part Ri of the i-th propagator

contributes to Σ. The left part Li of the i-th propagator (shaded) contributes to Σ̂. Σ and Σ̂ are

glued along the hidden boundaries represented by the dashed lines.

external states of the i-th vertex are on the Σ-side of the diagram, they do not affect the

Σ̂-side. In order to treat both Σ and Σ̂ symmetrically, we also insert a surface on Σ̂, the

trivial “identity surface”

[âi; 1] = [0; 1] . (6.13)

If, on the other hand, the external states are on the boundary corresponding to Σ̂, we have

a surface insertion

[âi; 1 | ~̂yi ] = [âi; 1 | ŷ1
i , . . . , ŷ

m̂i

i ] with âi > 0 (6.14)

on Σ̂ accompanied by a trivial insertion [ai; 1] = [0; 1] on the Σ side. Thus the n vertices

in the loop are described by 2n wedges, only n of which are non-trivial.

The propagators in the loop are in general complicated, because their geometric action

depends on the ghost number of the state that they act on [34]. Since states of all ghost

numbers circulate in the loop we cannot use the classical propagator (4.10). We choose the

alternating gauge introduced in [34] for the FP gauge fixing procedure of Schnabl gauge.

This yields the propagator

P = P+ Π+ + P− Π− , (6.15)

where Π+ (Π−) is the projector on even (odd) ghost number, and P±, for the i-th propa-

gator, are defined by

P+ =

∫
dsids

⋆
i e

−siLBQB⋆e−s⋆
i L⋆

, P− =

∫
dsids

⋆
i e

−s⋆
i L⋆

B⋆QBe−siL . (6.16)
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The classical propagator is P+ since it acts on ghost number two sources to give ghost

number one classical states. With external physical states of ghost number one, all non-

trivial surface insertions at the loop insert states of ghost number one. Since the three string

vertex couples states whose ghost numbers add up to three, the states on the two loop-

propagators that attach to the vertex must both have either even or odd ghost number.

Consequently the states running over all the propagators in the loop are either of even

ghost number or odd ghost number. It follows that in alternating gauge we only need

to consider two types of Riemann surfaces for every diagram at one loop level. The first

surface is constructed by including a projector onto states of even ghost number anywhere

in the loop and using P+ for all lines in the loop. The second surface is constructed with

a projector onto odd ghost numbers in the loop and using P− for all lines in the loop.

As mentioned before, the final set of surfaces is independent of the chosen direction

on the propagator on each line. For simplicity, however, we orient all propagators in the

loop clockwise. Tracing the outer loop counterclockwise, the right part of the propagator

contributes to the surface Σ on each line. The inner loop must be traced clockwise so

the left part of the propagator contributes to the surface Σ̂ on each line. This has been

illustrated in figure 14(b).

At fixed Schwinger parameters, the right part of P+ adds to Σ the slanted wedge

corresponding to the operator e−siLRe−s⋆
i L⋆

R , which is calculated in (4.22). The right part of

P−, on the other hand, adds the slanted wedge corresponding to e−s⋆
i L⋆

Re−siLR to Σ, which

is calculated using (4.11) and (4.17). We conclude that the i-th propagator contributes to

Σ the slanted wedge Ri given by

Ri ≡ [ri; e
si−s⋆

i ] with






ri = 1
2(1 + esi−s⋆

i ) − e−s⋆
i for even ghost number (P+)

ri = esi − 1
2 (1 + esi−s⋆

i ) for odd ghost number (P−) .

(6.17)

Similarly, the left part of the propagator contributes to Σ̂ the slanted wedge Li given by

e−siLLe−s⋆
i L⋆

L for P+ and e−s⋆
i L⋆

Le−siLL for P−. We readily find

Li ≡ [li; e
s⋆
i −si ] with






li = 1
2(1 + es

⋆
i −si) − e−si for even ghost number (P+)

li = es
⋆
i − 1

2(1 + es
⋆
i −si) for odd ghost number (P−) .

(6.18)

The definitions (6.17) and (6.18) generalize (5.12) from the classical propagators of tree

diagrams to loop propagators in alternating gauge.

We now assemble the complete surfaces Σ and Σ̂. We construct Σ by gluing the surfaces

of propagators and external states counterclockwise, starting at vertex 1. We obtain

Σ ≡ [a; eseff |~x ] = [a1; 1|~y1] ∗R1 ∗ · · · ∗ [an; 1|~yn] ∗Rn , (6.19)

Similarly, we construct Σ̂ by gluing the surfaces of propagators and external states. We

trace clockwise starting right below vertex 1 and get

Σ̂ ≡ [â; e−seff | ~̂x ] = Ln ∗ [ân; 1| ~̂yn ] ∗ · · · ∗ L1 ∗ [â1; 1| ~̂y1 ] . (6.20)
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It is clear from (6.19) and (6.20) that

seff =

n∑

i=1

(si − s⋆
i ) . (6.21)

It follows that the modulus M of the annulus is given by

M =
π

|seff |
. (6.22)

To calculate the positions of the punctures we first determine the total lengths a and â of

Σ and Σ̂. Looking at (6.19) we see that

a = a1 + r1 + es1−s⋆
1

(
a2 + r2 + es2−s⋆

2(a3 + r3 + . . . . (6.23)

This is readily seen to give

a =
n∑

i=1

e
Pi−1

j=1
sj−s⋆

j (ai + ri) =
n∑

i=1

bi (ai + ri) . (6.24)

where we defined

bi ≡ e
Pi−1

j=1
sj−s⋆

j . (6.25)

We can view bi as a local scaling factor. It is the product of the slant factors of the surfaces

R1, R2, . . ., up to Ri−1. It is the scaling factor that must apply to Ri when it is glued in

to form Σ in (6.19).

The value of â is computed similarly. Looking at (6.20) we write

â = es
⋆
n−sn ân + ln + es

⋆
n−sn

(
es

⋆
n−1−sn−1 ân−1 + ln−1 + . . . , (6.26)

which gives

â =
n∑

i=1

e
Pn

j=i+1 s⋆
j−sj (es

⋆
i −si âi + li) . (6.27)

Noticing that esi−s⋆
i li = ri (see (6.17) and (6.18)) we can also rewrite â as

â = e−seff

n∑

i=1

e
Pi−1

j=1
sj−s⋆

j (âi + ri) = e−seff

n∑

i=1

bi (âi + ri) . (6.28)

For insertions at positions yα
k and ŷα

k we denote by xα
k and x̂α

k their final coordinates on Σ

and Σ̂. The collection of these insertions were represented by ~x and ~̂x in (6.19) and (6.20).

Short calculations using (4.27) show that these positions are given by

xα
k − 1

2
= bk

(
yα

k − 1

2

)
+

k−1∑

i=1

bi (ai + ri) ,

x̂α
k − 1

2
= e−seff

(
bk

(
ŷα

k − 1

2
+ rk

)
+

n∑

i=k+1

bi (âi + ri)

)
.

(6.29)
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(a) (b)

Figure 15: The two diagrams contributing to the two-point function with both insertions on the

same boundary.

It follows immediately from (6.10) and (6.11) that in the annulus frame ζ these positions

translate into the angles

φα
k =

2π

seff
ln
(
2
∣∣∣xα

k − 1

2
+

a

eseff − 1

∣∣∣
)
, φ̂α

k =
2π

seff
ln
(
2
∣∣∣
1

2
− x̂α

k +
â

1 − e−seff

∣∣∣
)
. (6.30)

Up to a trivial overall rotation of the annulus, the angles (6.30) represent the open string

moduli of the one-loop diagram. This concludes our construction of moduli for general

one-loop diagrams in Schnabl gauge.

7. The one-loop two-point diagram

We now apply the general construction of section 6 to the one-loop two-point diagram. In

the following analysis we will restrict ourselves to the Riemann surfaces generated by even

ghost-number propagators running in the loop, i.e. we use the propagator P+ in the loop.

The other Riemann surface, which is generated by putting P− on all loop propagator lines,

can be calculated analogously.

7.1 Riemann surfaces with both insertions on the same boundary

Let us consider the one-loop two-point function with both insertions on the same boundary

component of the annulus — the so-called planar contributions. There are two diagrams

that contribute, as shown in figure 15.

7.1.1 First diagram

In the first diagram (figure 15(a)) we have two propagators in the loop (n = 2) and two

Fock space surfaces [1; 1|1] connected directly to vertices in the loop, on the side that we

choose to call the surface Σ. The Fock space surfaces do not contribute to Σ̂. In the

notation of (6.12)

a1 = a2 = 1 , y1
1 = y1

2 = 1 , â1 = â2 = 0 . (7.1)
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We label the Schwinger parameters of the two propagators by s1, s
⋆
1, s2, s

⋆
2 and (6.21) gives

seff = s1 − s⋆
1 + s2 − s⋆

2 . (7.2)

The length a of the Σ surface follows from (6.24) and (6.17). We find

a = 3
2 + 2es1−s⋆

1 − e−s⋆
1 +

1

2
eseff − es1−s⋆

1−s⋆
2 . (7.3)

The position of the punctures on Σ are found using (6.29) and (6.17). We obtain:

x1
1 = 1 , x1

2 = 2 + es1−s⋆
i − e−s⋆

1 . (7.4)

The relevant open string modulus is the relative angle between the insertions. Making use

of (6.30) a short calculation gives

∆φ = φ1
2 − φ1

1 =
2π

seff
ln

2 − e−s⋆
1 + es1−s⋆

1 + es
⋆
2−s2 − e−s2

1 − e−s⋆
1 + 2es1−s⋆

1 − es1−s⋆
1−s⋆

2 + eseff
. (7.5)

Just like for the five-point diagram, let us consider the Riemann surfaces generated by

the simplified propagator B/L. We thus set s⋆
1 = s⋆

2 = 0 and (7.5) becomes

∆φ =
2π

s1 + s2
ln
( 1 + es1

es1 + es1+s2

)
= π +

2π

s1 + s2
ln
(cosh s1

2

cosh s2

2

)
. (7.6)

It is convenient to study this angle for fixed modulus of the annulus: seff = s1 +s2 = const.

We then have

∆φ = π +
2π

seff
ln
( cosh s1

2

cosh seff−s1

2

)
. (7.7)

For s1 = 1
2seff the two punctures are maximally separated: ∆φ = π. As we vary s1 the

separation angle varies within an interval centered at π. The maximal (minimal) angle

∆φ+ (∆φ−) is obtained for s1 = seff (s1 = 0), and it is given by

∆φ± = π ± 2π

seff
ln cosh seff

2 . (7.8)

Close to closed string degeneration, i.e. for seff ≪ 1, we obtain the simplified expression

∆φ± = π ± π

4
seff for seff ≪ 1 . (7.9)

Thus near closed string degeneration the diagram just generates a region of moduli in

which the punctures are nearly opposite. Close to open string degeneration (seff → ∞)

equation (7.8) shows that almost the entire range of the position modulus is covered. In

general, not all of the range of the position modulus is obtained. In figure 16 we show

the region of the complete two-dimensional moduli space (seff ,∆φ) that the present, first

diagram covers. The remaining region, as we will see now, is generated by second diagram

contributing to the amplitude.
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(a) (b)

Figure 16: (a) The ζ-frame annulus for the planar one-loop two-point function. Insertion 1 is fixed

at angle φ = 0 and the position modulus is the angle ∆φ for insertion 2. Both string diagrams in

figure 15 are needed to generate the full position range 0 ≤ ∆φ ≤ 2π. (b) The space (seff ,∆φ) of

closed and open moduli is covered fully by the indicated string diagrams.

7.1.2 Second diagram

In the second diagram (figure 15(b)) there is only one propagator in the loop (s⋆, s) and

both external states are connected to the loop through another internal propagator (t, t⋆).

We then have

[a1; 1| y1
1 , y

2
1 ] = e−tLe−t⋆L⋆

[2; 1|1, 2] = [1 − 2e−t + 3et
⋆−t; 1|y1

1 , y
2
1 ] , (7.10)

where we use (4.23) and (4.29) to obtain

a1 = 1 − 2e−t + 3et
⋆−t , y1

1 = 1 − e−t + et
⋆−t , y2

1 = 1 − e−t + 2et
⋆−t , â1 = 0 . (7.11)

To build Σ we use (6.19) with n = 1 and find

Σ ≡ [a; es−s⋆ |x1
1, x

2
1] = [a1; 1| y1

1 , y
2
1 ] ∗ [r1; e

s−s⋆

] , r1 =
1

2
(1 + es−s⋆

) − e−s⋆

, (7.12)

and thus

a = a1 + r1 = 3
2 − 2e−t + 3et

⋆−t − e−s⋆

+
1

2
es−s⋆

. (7.13)

As [a1; 1| y1
1 , y

2
1] is the left-most surface in Σ, the positions of insertions on Σ coincide with

the positions of insertions on [a1; 1]: we have x1
1 = y1

1 and x2
1 = y2

1. For the relative angle

∆φ between the two insertions we use (6.30) to obtain

∆φ =
2π

seff
ln

(
1 − e−s⋆

+ es−s⋆ − e−t + et
⋆−t − es−s⋆−t + 2es−s⋆+t⋆−t

1 − e−s⋆ + es−s⋆ − e−t + 2et⋆−t − es−s⋆−t + es−s⋆+t⋆−t

)
, (7.14)

with seff = s− s⋆.

Let us again focus on the surfaces generated by the simplified propagators B⋆/L⋆ or

B/L. We have two options.

– 45 –



J
H
E
P
0
7
(
2
0
0
8
)
0
6
3

• s⋆ = t = 0 (The case s = t = 0 gives similar results)

In this case seff = s and ∆φ reduces to

∆φ =
2π

seff
ln

(
et

⋆
+ 2eseff+t⋆ − 1

2et⋆ + eseff+t⋆ − 1

)
. (7.15)

For t⋆ → 0, this gives

∆φ =
2π

seff
ln

(
2eseff

1 + eseff

)
= π − 2π

seff
ln cosh seff

2 for t⋆ → 0 , (7.16)

and matches smoothly to the first diagram’s ∆φ− as given in (7.8).

For t⋆ → ∞, however, there is no collision between the insertions. Instead, we obtain

∆φ =
2π

seff
ln

(
1 + 2eseff

2 + eseff

)
for t⋆ → ∞ . (7.17)

Thus diagram two with propagator B⋆/L⋆ in the subtree does not cover moduli

space together with diagram one. This is not surprising because tracing along

the Σ boundary of the Feynman diagram we encounter the operator combination

e−t⋆LLe−seffL⋆
Le−t⋆L⋆

L . At fixed annulus modulus, i.e. for seff = const, this operator

does not produce open string degeneration for t⋆ → ∞. In fact,

lim
t⋆→∞

e−t⋆LLe−seffL⋆
Le−t⋆L⋆

L [a; b] = [a+ 1
2(eseff + 1); eseff b] , (7.18)

which is a perfectly regular surface.

• s⋆ = t⋆ = 0 (The case s = t⋆ = 0 gives similar results)

Again, seff = s and this choice corresponds to B/L as the propagator in the tree.

This time we obtain

∆φ =
2π

seff
ln

(
eseff + eseff−t

eseff + e−t

)
= π − 2π

seff
ln

(
cosh t+seff

2

cosh t
2

)
. (7.19)

For t = 0 we again match to ∆φ− in the first diagram. This time, all angles 0 <

∆φ < ∆φ− are covered. Indeed,

∆φ→ 0 for t→ ∞ . (7.20)

This is sufficient to cover moduli space together with diagram one, as shown in

figure 16. The diagram gives the shaded region 0 < ∆φ < ∆φ−. Of course, since

external states are distinguishable, the region ∆φ+ < ∆φ < 2π is generated by the

string diagram in which the order of the Fock space state insertions is reversed.

7.2 Riemann surfaces with insertions on both boundaries

Let us consider a one-loop amplitude with one Fock space state insertion on the outer

boundary and one Fock space state insertion on the inner boundary. This nonplanar string

diagram in shown in figure 17. As [a1; 1|1] and [â2; 1|1] are the Fock space surfaces, we
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Figure 17: The diagram of the two-point function with insertions on both boundaries.

have

a1 = â2 = 1 , a2 = â1 = 0 , y1
1 = 1 , ŷ1

2 = 1 . (7.21)

We have two propagators running in the loop. The relevant surfaces, using (6.19) and (6.20)

are

Σ ≡ [a; 1|x1
1] = [1; 1|1] ∗R1 ∗R2

Σ̂ ≡ [â; 1|x̂1
2] = L2 ∗ [1; 1|1] ∗ L1 .

(7.22)

The relevant parameters above are readily calculated:

a =
3

2
− e−s⋆

1 + es1−s⋆
1

(
1 − e−s⋆

2 +
1

2
es2−s⋆

2

)

â = e−seff

(
1

2
− e−s⋆

1 + es1−s⋆
1

(
2 − e−s⋆

2 +
1

2
es2−s⋆

2

))
,

seff = s1 − s⋆
1 + s2 − s⋆

2 ,

x1
1 = 1 ,

x̂1
2 = es

⋆
2−s2 − es2 + 1 .

(7.23)

A calculation using the above results and (6.30) gives us the difference in insertion angles

∆φ = φ̂1
2 − φ1

1 =
2π

seff
ln

1 − e−s⋆
1 + es1−s⋆

1 − e−s2 + es
⋆
2−s2

1 − e−s⋆
1 + es1−s⋆

1 − es1−s⋆
1
−s⋆

2 + eseff
. (7.24)

Let us consider two cases of simplified propagators. If both propagators are B/L, then

we can set s⋆
1 = s⋆

2 = 0 (similarly for B⋆/L⋆ and s1 = s2 = 0) and obtain

∆φ =
2π

s1 + s2
ln

es1

eseff
= 2π

s1
s1 + s2

. (7.25)

Moduli space is covered: for fixed seff = s1 + s2, ∆φ takes on all values between 0 and 2π.
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To examine the case of mixed propagators B/L and B⋆/L⋆ we set s⋆
1 = s2 = 0. Then,

∆φ =
2π

s1 − s⋆
2

ln(es1−s⋆
2 − e−s⋆

2 + 1) . (7.26)

Since s1 = seff + s⋆
2 and s1, s

∗
2 ≥ 0, for fixed seff > 0 we have a constraint in the range of s1.

Moduli space is not fully covered. In fact, for seff → ∞ we have ∆φ → 2π for the entire

range of permissible s1, s
⋆
2. In this limit the open string modulus is stuck at the collision

of punctures.

8. A regularized view on one-loop diagrams

In section 6 we presented a prescription to map the Riemann surface of a general one-loop

diagram to the annulus while keeping track of the operator insertions of external states.

This allowed us to calculate the closed and open string moduli of the surface as simple

functions of the Schwinger parameters. The treatment was entirely in Schnabl gauge and

used the formalism of slanted wedges. To justify our prescription, however, we need to

revisit the construction by regularizing Schnabl gauge. This analysis extends the proof for

the one-loop tadpole given in section 3.3 to general one-loop diagrams. Again, we use the

λ-regularization introduced in [34]. To confirm our prescription we need to examine the

three types of operations that are used. These operations are the multiplication of slanted

wedges, the gluing between left and right boundaries on both Σ and Σ̂, and the gluing of

Σ and Σ̂ to each other at their hidden boundaries. Before we check these operations, let

us analyze the relevant gluing boundaries in more detail.

8.1 The boundaries of regularized slanted wedges

To examine the gluing curves, it is convenient to represent the coordinate curve fλ(eiθ) in

the z frame in terms of the parameterized curves γλ
R and γλ

L defined in (2.25) and shown in

figure 1(c). Regarded as the regulated surface [1; 1|1], a Fock space state is then bounded

by 1
2 + γλ

L and 3
2 + γλ

R. The boundaries touch at the midpoint θ = π/2.

Similarly, the regularized slanted wedge corresponding to e−sLλ
R is bounded by the

curves 1
2 + γλ

R and es(1
2 + γλ

R). Its left boundary glues nicely to a Fock space state. The

right boundary is a simple rescaling of the left boundary by es. This was illustrated in the

context of the tadpole graph in figure 6(b). The two boundaries of e−sLλ
R do not touch for

θ = π
2 . In fact, e−sLλ

R has a vertical boundary on the imaginary axis from iΛ to iesΛ, as

discussed in section 3. This vertical line segment connects the endpoints of the left and

right boundary of e−sLλ
R .

The regularized slanted wedge corresponding to e−s⋆(Lλ
R

)⋆
is more delicate. Recall that

in figure 11 we flipped the surface around its right vertical boundary to be able to interpret

e−s⋆L⋆
R as the slanted wedge [12(1−e−s⋆

); e−s⋆
]. We conclude that the regularized boundaries

of e−s⋆(Lλ
R

)⋆
are given by 1

2 + γλ
L and 1

2 + 1
2(1 − e−s⋆

) + e−s⋆
γλ

L. The surface of e−s⋆(Lλ
R

)⋆

also has a hidden vertical boundary. It is located between 1 + ie−s⋆
Λ and 1 + iΛ. These

facts are illustrated in figure 18, where we also show the surface for e−s⋆(Lλ
L
)⋆

, which needs
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Figure 18: The regularized version of the slanted wedges corresponding to e−s
⋆(Lλ

L
)⋆

and e−s
⋆(Lλ

R
)⋆

.

further displacement and rescaling to be presented as a regularization of a conventional

slanted wedge.

In our construction, we build surfaces from slanted wedges associated with propagators

and Fock space states. From this it is clear, that the slanted wedges [a; b] relevant to our

construction will, after regularization, be bounded on the left by either 1
2 + γλ

L or 1
2 + γλ

R

and will be bounded on the right by either 1
2 +a+ bγλ

L or by 1
2 +a+ bγλ

R. Furthermore, the

slanted wedges associated with the left and right parts of e−sL and e−s⋆L⋆
carry a hidden

boundary that needs to be glued to the hidden boundary of a complementary surface.

For λ→ 0, the curves γλ
L/R(θ) both approach the canonical vertical sliver parametriza-

tion γ(θ) defined in (2.26). One may therefore wonder why it is not trivial that regularized

slanted wedges glue nicely for λ → 0. The problem is that the convergence of γλ
L/R(θ) to

the curve γ(θ) in the limit λ → 0 is not uniform on the full interval 0 ≤ θ ≤ π
2 . In fact,

for any λ > 0, the curves γλ
L/R start deviating significantly from γ in the region where

ℑ(z) is of order Λ, as discussed in section 2.1. This effect can be neglected for tree-level

amplitudes. In fact, the relevant frame for the calculation of moduli and correlators in tree

amplitudes is the disk frame η, which is related to the z frame through

η = exp

(
2πiz

a

)
. (8.1)

Here, a > 0 is a function of the Schwinger parameters and independent of λ. All points

with large imaginary values in the z frame converge to the point η = 0. In the η-frame,

the deviations of γλ
L/R from γ are thus suppressed by a factor of e−

2πΛ
a , which vanishes for

λ→ 0.
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For one-loop diagrams the natural frame to consider for the gluing is either the ζ-frame

of the annulus or the w frame, in which the annulus is “unwrapped”. The w coordinate is

given by

w = − ln(2z) + iπ . (8.2)

Clearly, not all points z with large imaginary values converge to a single point in the w

frame. Therefore the analysis for one-loop diagrams is more subtle than for trees. The

mapping of the boundary curves γλ
L/R to the w frame have been analyzed in the context

of the simplified tadpole diagram. Indeed, in section 3 we have proven that when mapped

to the w frame, the left boundary of the Fock space state is a translation by s of the right

boundary of e−sLR . Concretely, we showed in claim (2) of section 3.3 that

lim
λ→0

w

(
a0 +

1

2
+ γλ

L

)
− w

(
es
(
a0 +

1

2
+ γλ

R

))
= s . (8.3)

The limit holds uniformly on 0 ≤ θ ≤ π
2 . This result can be easily generalized to the

uniform convergence

lim
λ→0

w
(
es

′

(d+ γλ
L/R)

)
− w

(
es

′′

(d+ γλ
R/L)

)
= s′′ − s′

∀ d, s′, s′′ ∈ R independent of λ ; d 6= 0 .
(8.4)

Note that only this case of mixed curves γL and γR is non-trivial. If both curves are either

of the type γL or of the type γR, the identity analogous to (8.4) is exact for all λ:

w
(
es

′

(d+ γλ
L/R)

)
−w

(
es

′′

(d+ γλ
L/R)

)
= s′′ − s′ for all λ ≥ 0 . (8.5)

This follows from the definition of the map (2.9) to the w frame.

8.2 Gluings and identifications on Σ

For one-loop diagrams, we know from (6.19) that the surface Σ is constructed by the

multiplication of 2n slanted wedges. Let as analyze the validity of the gluing between any

pair of neighboring slanted wedges in this product. To this end, we split the surface Σ into

two slanted wedges. One of them comprises all the surfaces to the left of the gluing we are

interested in, the other one comprises all the surfaces to the right of this gluing. We thus

have

Σ = [a; eseff ] = [a1; b1] ∗ [a2; b2] . (8.6)

When multiplying the slanted wedges [a1; b1] and [a2; b2], we need to glue the right boundary

of [a1; b1] to the left boundary [a2; b2]. To see that our usual multiplication prescription

is valid, we analyze this gluing of the two boundaries using λ-regulated slanted wedges.

If these boundaries are either both of the type γλ
L or both of the type γλ

R, the gluing is

natural for all λ and no limit needs to be taken. If the boundaries are of mixed type, the

gluing curves do not match for ℑ(z) of order Λ. The surfaces thus either start overlapping

or separating in this region. But using (8.4) in the form

lim
λ→0

w

(
1

2
+ a0 + a1 + b1γ

λ
L

)
− w

(
1

2
+ a0 + a1 + b1γ

λ
R

)
= 0 , (8.7)
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we see that the boundaries match in the w frame for λ→ 0. The shift a0, defined in (6.5),

is independent of λ so that uniform convergence is guaranteed. We have thus shown that

all the slanted wedges which are multiplied in the construction of Σ glue nicely to each

other in the w frame when λ→ 0.

Eventually, we also have to glue the left and right boundaries of Σ to each other. This

is done by the map from the w frame to the annulus ζ through (6.8). This map has the

periodicity w ∼ w − seff . It is thus sufficient to show that in the limit λ → 0, the left and

right boundaries of Σ are related through a translation by seff in the w frame. As shown

in (8.5), if both boundaries of Σ are of type γλ
L or both are of type γλ

R, this relation in the

w frame is exact by construction, even for finite λ. If one boundary is of the type γλ
L and

the other boundary is of the type γλ
R, we can use (8.4) in the form

lim
λ→0

w

(
1

2
+ a0 + γλ

L/R

)
− w

(
eseff

(
1

2
+ a0 + γλ

R/L

))
= seff (8.8)

to see that the two boundaries of Σ are related through a translation by seff in the w frame.

In summary, we have shown that the w-frame image of Σ, as λ → 0, represents a

smooth surface which is foliated by horizontal lines of length |seff |. Clearly, the same

arguments as above also apply to the surface Σ̂. To complete the proof of our prescription,

we still need to show that the surfaces Σ and Σ̂ also glue smoothly to each other at their

hidden boundaries.

8.3 Gluing the hidden boundaries

In constructing one-loop amplitudes for Schnabl gauge, we cut the surfaces associated with

e−siL and e−s⋆
i L⋆

into two pieces associated with their left and right parts. As we saw using

λ-regularization, these surfaces really have a hidden boundary at i∞ at which they were

cut, and we need to ensure that these hidden boundaries glue nicely when we form the

annulus.

In the λ-regularized construction the hidden boundaries are of the general form

z = d+ ixΛ with es
′ ≤ x ≤ es

′′

, d, s′, s′′ ∈ R independent of λ . (8.9)

The parameters d, s′, and s′′ are thus suitable to characterize general hidden boundaries

of slanted wedges. They emerge as actual vertical boundary segments once the slanted

wedge is regularized, but we will still call them hidden boundaries, to avoid confusion with

other types of boundaries. The hidden boundary of e−s⋆(Lλ)
⋆

R , for example, stretches from

1 + ie−s⋆
Λ to 1 + iΛ, as we can see in figure 18. We thus have d = 1, s′ = −s⋆, and s′′ = 0

as the parameters of the hidden boundary of e−s⋆L⋆
R . Note also that the parameters s′ and

s′′ are just the logarithms of the scaling factors that apply to the left or right boundaries

of the surface associated with e−s⋆L⋆
R . The parameter s′′ that defines the top endpoint of

the hidden boundary arises from the left boundary which has a scale factor of one, thus

s′′ = 0. The parameter s′ that defines the bottom endpoint of the hidden boundary arises

from the right boundary, which has a scale factor of e−s⋆
, thus s′ = −s⋆.
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Let us summarize the parameters of hidden boundaries for slanted wedges associated

with propagators:

d = 0 s′ = 0 s′′ = s for the hidden boundary of e−sLR , (8.10)

d = 1 s′ = −s s′′ = 0 for the hidden boundary of e−sLL , (8.11)

d = 1 s′ = −s⋆ s′′ = 0 for the hidden boundary of e−s⋆L⋆
R , (8.12)

d = 0 s′ = 0 s′′ = s⋆ for the hidden boundary of e−s⋆L⋆
L . (8.13)

When we multiply regulated slanted wedges to form the surfaces Σ and Σ̂, hidden bound-

aries get shifted and rescaled. Of course they are then still of the general form (8.9).

In proving claim (1) of section 3.3 –that the hidden boundaries of e−sLL and e−sLR

glue nicely in the tadpole graph– we showed that

lim
λ→0

w(ixΛ) − w(a0 + 1 + ixΛ) = 0 for all 1 ≤ x ≤ es . (8.14)

More generally, consider two hidden boundaries of the form (8.9) with identical ranges of x

so that they are related by just a horizontal translation. If the horizontal distance ∆d ∈ R

that separates these hidden boundaries is independent of λ, they glue nicely in the w frame

in the limit λ → 0. A straightforward generalization of the proof in section 3.3 indeed

shows that the following limit holds uniformly

lim
λ→0

w(d+ ixΛ) − w(d+ ∆d+ ixΛ) = 0 ∀ es′ ≤ x ≤ es
′′

with d,∆d, s′, s′′ ∈ R . (8.15)

We now show that for one-loop diagrams all gluings of hidden boundaries work nicely

in the w frame. Each propagator in the loop has two hidden boundaries, one from cutting

e−sL and one from cutting e−s⋆L⋆
. For definiteness, we analyze the k-th propagator in the

loop and assume it is of type P+. This propagator is responsible for the insertion of the

slanted wedge associated with

e−skLR e−s⋆
k
L⋆

R into Σ . (8.16)

The same propagator will be responsible for the insertion of the slanted wedge associated

with

e−skLL e−s⋆
k
L⋆

L into Σ̂ . (8.17)

We will focus on the underlined operators in the two expressions above. The first produces

a hidden boundary in Σ and the second a hidden boundary in Σ̂. We aim to show that

these hidden boundaries appear at the same height and have the same vertical range so

that (8.15) implies that they glue correctly as the regulator is removed. More concretely,

we want to show that these two hidden boundaries are characterized by (8.9) with identical

parameters s′ and s′′, both independent of λ. The value of d for each boundary must also

be λ-independent.

Let us begin with the hidden boundary generated by e−s⋆
k
L⋆

R in Σ. Just before Σ is

mapped to the w frame, the associated slanted wedge has its left boundary at a position

xk
L that is independent of λ (as is familiar from our calculations of positions in section 6,
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positions just depend on Schwinger parameters). According to (8.12), the hidden boundary

of e−s⋆
k
L⋆

R , as a canonically presented slanted wedge is positioned a distance d − 1
2 = 1

2 to

the right of its left boundary. We conclude that on Σ, it is positioned a distance 1
2bk from

its left boundary, i.e. at d = xk
L + 1

2bk. The factor of bk is necessary because it represents

the local scale factor : it is the product of the scale factors of all the slanted wedges that

precede the insertion of e−s⋆
k
L⋆

R in Σ (see (6.19)). Note that the first operator in (8.16)

does not contribute to the local scale factor because its slanted wedge ends up to the right

of the one we are looking at. As both xk
L and bk are manifestly λ independent, so is the

location d of the hidden boundary. This is all that matters, its specific value is not needed.

The parameters s′ and s′′ for e−s⋆
k
L⋆

R listed in (8.12) get a contribution from the loga-

rithm of the local scale factor bk at the insertion. We thus have:

s′ = −s⋆
k + ln bk , s′′ = 0 + ln bk = ln bk , for e−s⋆

k
L⋆

R on Σ . (8.18)

Let us now consider the insertion of e−s⋆
k
L⋆

L on Σ̂, just before Σ̂ is mapped to the w

frame. The position x̂k
L of the associated slanted wedge, defined as the real value of its left

boundary, is independent of λ. What we need is the local scale factor bloc at this position.

For this we recall that Σ̂ is rescaled by eseff in such a way that its left boundary has scaling

factor eseff and the right boundary has unit scaling factor. It then follows from (6.20) that,

in addition to eseff , we get the multiplicative contribution from the slant parameters of

Ln, Ln−1, . . . , Lk+1 and the slant parameter of the first operator in (8.17). This gives

bloc = eseff · e
Pn

j=k+1(s⋆
j−sj) · e−sk = e

Pk
j=1(sj−s⋆

j ) · e−sk = bke
−s⋆

k . (8.19)

This time the s′ and s′′ parameters in (8.13) are modified by the addition of the logarithm

of bloc. We thus get

s′ = 0 + ln bloc = −s⋆
k + ln bk , s′′ = s⋆

k + ln bloc = ln bk , for e−s⋆
k
L⋆

L on Σ̂ . (8.20)

Comparing (8.18) with (8.20), we see that the parameters s′ and s′′ match precisely. There-

fore we conclude from (8.15) that the hidden boundaries of e−s⋆
k
L⋆

R and e−s⋆
k
L⋆

L glue nicely

in the w frame.

A few remarks are in order.

• The hidden boundaries of e−skLR and e−skLL also glue seamlessly in the w frame.

The proof is completely analogous to the one presented above.

• The propagators in subtrees also have hidden boundaries. The hidden boundaries

associated with a subtree propagator are either both on Σ or both on Σ̂. These

boundaries cannot be simply ignored because unlike in tree-amplitudes, the subtree

is mapped to the annulus and not to the disk. Still, it is easy to see by a similar

analysis as for loop propagators that these hidden boundaries glue nicely in the w

frame.

• One might wonder if the question of gluing hidden boundaries could have been ig-

nored. After all, these hidden boundaries are pushed off to i∞ in the z frame and to

– 53 –



J
H
E
P
0
7
(
2
0
0
8
)
0
6
3

π
2 −i∞ in the w frame and these seem to be well defined points. This naive argument,

however, leads to wrong conclusions. It would allow independent z-frame rescalings

of Σ and Σ̂, which is equivalent to shifting their relative horizontal position in the w

frame. On the annulus, this corresponds to rotating the inner and outer boundaries

of the annulus with respect to each other. But if we have insertions on both the inner

and the outer boundary, the configuration after such a relative rotation is not con-

formally equivalent to the original one. We conclude that the naive expectation that

the gluing in Schnabl gauge works out correctly automatically, leaves an ambiguity

in the open string moduli. This ambiguity is fixed when we regulate and demand the

gluing to work out nicely in the limit λ→ 0.

• While we did our analysis of the gluing of hidden boundaries using the λ-regulated

gauges, any other family of regular linear b-gauges associated with zero modes in the

frames z = f̃λ(ξ) could have been used, as long as this family approaches Schnabl

gauge in the limit λ→ 0. By construction, for such a family the frames satisfy

lim
λ→0

Λ̃ = ∞ with iΛ̃ ≡ f̃λ(i) . (8.21)

The proof of consistent gluing of hidden boundaries goes through with Λ → Λ̃.

This concludes the proof of our prescription for the construction of general one-loop

Riemann surfaces in Schnabl gauge.

9. Concluding remarks

The open string midpoint has played a very subtle and important role in covariant open

string field theory. The midpoint makes it non-trivial to formulate open string field theory

as a theory of half-strings (see [43]). Spacetime diffeomorphisms are not quite open-string

gauge symmetries because of the special status of the midpoint in the star product [44].

Nevertheless, closed string poles appear in open string loop diagrams, again because of the

special role of the midpoint. Naively, the star algebra was expected to have no projectors.

But again, open string surface states with singular behavior at the midpoint give rise to

projectors that seem to be completely consistent.

It is perhaps no surprise then that the tachyon vacuum solution uses a gauge, Schnabl

gauge, that is described by the conformal frame of a projector. So does the rolling tachyon

solution that describes the decay of a D-brane. Since observables associated with these

solutions probe closed string physics [28, 45, 46] it is natural to ask if the use of Schnabl

gauge allows the correct incorporation of closed string physics. As a first step, we ask

if Schnabl gauge, just like Siegel gauge, leads to correct loop amplitudes. Indeed, naive

arguments suggested that the singular midpoint behavior in Schnabl gauge could ruin the

validity of the gauge at loop level, precisely where closed string physics is revealed. In a

nutshell, the string diagrams for one loop appeared to give a surface that is disconnected

into two pieces, each of which contains one of the boundary components of the annulus.

The analysis presented in this paper gives reason for optimism and teaches us a few

facts:
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• The left and right parts of the operator L (the Virasoro zero-mode in sliver frame) fail

to commute. This non-commutation is required by consistency: it introduces a finite

hidden boundary to each of the two disconnected surfaces that form the annulus.

The gluing across the hidden boundaries restores the closed string moduli.

• Schnabl gauge string diagrams at one loop cover the (one-dimensional) closed string

moduli space. This is no proof of complete consistency, but dispels the fear of incon-

sistency due to subtle midpoint effects.

• All moduli, open and closed, of one-loop amplitudes with arbitrary numbers of open

string states are calculable in closed form. Schnabl gauge off-shell amplitudes may

ultimately be recognized as simpler than those in the familiar Siegel or light-cone

gauges.

• Wedge surfaces have a natural generalization in the form of slanted wedges. Only on

slanted wedges we have a natural action of the left and right parts of the operators

L and L⋆. The use of these surfaces allows us to give (for the first time) an explicit

algorithm to construct arbitrarily complicated tree and one-loop diagrams.

The focus in this paper has been narrow. We have studied the moduli of the diagrams

generated in Schnabl gauge. We have not calculated any loop amplitude in detail. For

this one must, of course, deal with the antighost and BRST insertions. Even regarding

moduli we have not answered everything. Though the specific examples we have analyzed

in this paper are encouraging, it is not yet clear whether open string moduli are covered in

general. This problem is in fact still unsolved at tree-level. We are lacking proof that even

tree amplitudes are correctly reproduced in Schnabl gauge. The open string propagator

has moduli associated with the operators B/L and B⋆/L⋆, but also contains the BRST

operator Q, which acts as a total derivative on moduli space. Our analysis of the tree-level

five-point function and the one-loop two-point function suggests that there might be an

assignment of simplified propagators B/L and B⋆/L⋆ to the propagator lines so that the

string diagram has all the requisite degenerations. Finding such an assignment could be

the next step in a proof of consistency of Schnabl gauge.

The λ-regularized gauges are fully consistent and Schnabl gauge amplitudes can in

principle be defined by the limit λ→ 0 of λ-regulated amplitudes. Calculating regularized

amplitudes is problematic, because even at small (but fixed) λ, the geometry differs sig-

nificantly from the Schnabl geometry when any Schwinger parameter becomes large, i.e.

of order O(log log λ−1). When one imposes cutoffs on the integration region of Schwinger

parameters, the limit of removing these cutoffs and the limit λ → 0 do not, in general,

commute. It would be interesting to determine a cutoff prescription for which these limits

commute and thus define consistent amplitudes for Schnabl gauge. A possible candidate

for such a prescription is a generalization of the symmetric limit defined for the four-point

amplitude in [32]. Note that, in this paper, we took the limit λ → 0 at fixed Schwinger

parameters and any amplitude calculated using these surfaces is thus a true Schnabl-gauge

amplitude and needs to be supplemented with a suitable prescription on the integration

over Schwinger parameters.
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The conformal field theory boundary state of the rolling tachyon has been studied to

extract the time-dependent pressure profile of tachyon condensation (see [47] and references

therein). The result suggests that the pressure goes to zero at late times, consistent with

the expectation that the D-brane decays into heavy non-relativistic closed strings. The

conformal field theory analysis of the closed string production in the background of the

rolling tachyon encounters UV divergences [48]. As the corresponding analytic solution of

string field theory has been found, this problem can now also be studied within open string

field theory.5 It would be interesting to extract a boundary state from the one-loop open-

string vacuum amplitude in the background of the rolling tachyon solution. This string

field theory boundary state may confirm the expected late time behavior of the pressure

and could help us understand the role of observables in open string field theory.

All in all, our work shows that Schnabl gauge is not only a convenient gauge for analytic

solutions in string field theory but also simplifies string perturbation theory considerably.

While the ultimate consistency proof is still pending, we hope that the tools developed

here will help construct this proof and lead to new insights into the role of closed strings

in open string field theory.
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A. Covering of moduli space in the five-point diagram

In this appendix we will analyze which assignment of B/L and B⋆/L⋆ to the propagators

in the five-point amplitude always produces open string degenerations when a Schwinger

parameter becomes large. To do so, we will set one of the Schwinger parameters of each

propagator to zero in our result for the angles of operator insertions on the unit circle (5.7).

Notice that the only degenerations we expect from the diagram in figure 12 are the collision

of the insertions of |FA〉 and |FB〉, and the collision of the insertions of |FD〉 and |FE〉. There

are three distinct cases of B/L and B⋆/L⋆ assignments.

• case 1: t1 = t2 = 0 (propagator 1: B⋆/L⋆; propagator 2: B⋆/L⋆)

The angles of operator insertions for this case can be calculated from (5.7). They are

given in Table 1.

The angles φC , φD, and φE approach each other for t⋆1 → ∞, if t⋆2 stays finite. This

is conformally equivalent to φA and φB coming close together. But this cannot be

a stable degeneration, because if t⋆2 also becomes large, the angles φA and φB are

no longer degenerate. In fact, for t⋆1 = t⋆2 → ∞ all insertions are separated by finite

angles from each other! Thus this is not a consistent assignment of B/L and B⋆/L⋆.

5For an interesting recent analysis of observables associated with on-shell closed string states, see [28].
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finite t⋆1, t
⋆
2 t⋆1 → ∞ t⋆2 → ∞ t⋆1 = t⋆2 → ∞

φB−φA

2π
et⋆1

3et⋆
1+3et⋆

2−1

1
3 0 1

6

φC−φA

2π
2et⋆1

3et⋆
1+3et⋆

2−1

2
3 0 1

3

φD−φA

2π
2et⋆1+et⋆2

3et⋆
1+3et⋆

2−1

2
3

1
3

1
2

φE−φA

2π
2et⋆1+2et⋆2

3et⋆
1+3et⋆

2−1

2
3

2
3

2
3

Table 1: The angles of operator insertions in the five-point diagram for case 1: t1 = t2 = 0.

finite t1, t2 t1 → ∞ t2 → ∞ t1 = t2 → ∞

φB−φA

2π
e−t1

3+e−t1+e−t2
0 e−t1

3+e−t1
0

φC−φA

2π
1+e−t1

3+e−t1+e−t2

1
3+e−t2

1+e−t1

3+e−t1

1
3

φD−φA

2π
2+e−t1

3+e−t1+e−t2

2
3+e−t2

2+e−t1

3+e−t1

2
3

φE−φA

2π
2+e−t1+e−t2

3+e−t1+e−t2

2+e−t2

3+e−t2

2+e−t1

3+e−t1

2
3

Table 2: The angles of operator insertions in the five-point diagram for case 2: t⋆1 = t⋆2 = 0.

• case 2: t⋆1 = t⋆2 = 0 (propagator 1: B/L; propagator 2: B/L)

The angles of operator insertions for this case are given in Table 2. The angles

φA and φB come close together for t1 → ∞. Making t2 also large cannot prevent

the degeneration. Similarly, the degeneration of φD and φE in the limit t2 → ∞
cannot be undone by making t1 comparably large. Thus, this is a good assignment

of propagators.

• case 3: t⋆1 = t2 = 0 (propagator 1: B/L , propagator 2: B⋆/L⋆)

The angles of operator insertions for this case are given in Table 3. The angles φA

and φB come close together for t1 → ∞. Making t⋆2 also large, cannot prevent the

degeneration. Similarly, for t⋆2 very large, φA, φB and φC approach each other. This

is conformally equivalent to φD and φE coming close together. Again, this cannot

be undone by making t1 comparably large. Thus, this is also a good assignment

of propagators.
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finite t1, t
⋆
2 t1 → ∞ t⋆2 → ∞ t1 = t⋆2 → ∞

φB−φA

2π
e−t1

1+e−t1+3et⋆
2

0 0 0

φC−φA

2π
1+e−t1

1+e−t1+3et⋆
2

1

1+3et⋆
2

0 0

φD−φA

2π
1+e−t1+et⋆2

1+e−t1+3et⋆
2

1+et⋆2

1+3et⋆
2

1
3

1
3

φE−φA

2π
1+e−t1+2et⋆2

1+e−t1+3et⋆
2

1+2et⋆2

1+3et⋆
2

2
3

2
3

Table 3: The angles of operator insertions in the five-point diagram for case 3: t⋆1 = t2 = 0.
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